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ABSTRACT
We consider the problem of quickest change detection (QCD) for a
signal which may undergo both a nuisance and a critical change. Our
goal is to detect the critical change without raising a false alarm over
the nuisance change. An optimal sequential change detection proce-
dure is proposed for the Bayesian formulation of our QCD problem.
A sequential change detection procedure based on the generalized
likelihood ratio test (GLRT) statistic is also proposed for the non-
Bayesian formulation. We show that our proposed test statistics can
be computed efficiently via respective recursive update schemes. We
compare our proposed stopping rules with the naive 2-stage proce-
dures, which attempt to detect the changes using separate optimal
stopping procedures (i.e., the Shiryaev procedure in the Bayesian
formulation, and the CuSum procedure in the non-Bayesian formula-
tion) for the nuisance and critical changes. Simulations demonstrate
that our proposed rules outperform the 2-stage procedures.

Index Terms— Quickest change detection, Nuisance change,
Optimal Stopping Time, Recursive update, GLRT statistic

1. INTRODUCTION

The problem of detection for a deviation in the statistical proper-
ties of a signal with the shortest possible delay is known as quickest
change detection (QCD). Usually, we are given a sequence of inde-
pendent and identically distributed (i.i.d) observations {xt : t ∈ N}
with distribution f up to an unknown change point ν and i.i.d. with
distribution g 6= f after. As the signal is observed sequentially, the
goal is to detect this change as quickly as possible while subject to
some false alarm constraints. QCD is traditionally applied to manu-
facturing, in areas such as quality control [1,2] where any change in
the quality of products must be quickly detected. With the decrease
in cost and size of modern-day sensors, QCD methods have found
applications in other areas such as fraud detection [3], cognitive ra-
dio [4], network surveillance [5–8], structural health monitoring [9],
spam detection [10], bioinformatics [11], power system line outage
detection [12], remote sensing [13] etc.

In the Bayesian formulation of QCD, the change-point is as-
sumed to be a random variable possessing a prior distribution.
Shiryaev [14–16] solved the QCD problem when both the pre- and
post-change distributions are known and the change-point has a
geometric prior distribution. The detection procedure is based on
testing the posterior probability of the change currently in effect
against a certain detection threshold is proved to be optimal. The
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procedure stops once the posterior probability exceeds the threshold.
In [17, 18], the authors developed an asymptotic Bayesian theory of
QCD for a class of non-i.i.d. signal models and prior distributions.

For the non-Bayesian formulation of QCD, the change-point is
assumed to be unknown but deterministic. When both the pre- and
post-change distribution are known, Page [19] developed the Cumu-
lative Sum Control Chart (CuSum) for quickest change detection.
Lorden [20] proved that the CuSum test has asymptotically optimal
worst-case average detection delay as the false alarm rate goes to
zero. Moustakides [21] later established that the CuSum test is ex-
actly optimal under Lorden’s optimality criterion. Later, Lai showed
in [22] that the CuSum test is asymptotically optimum under Pol-
lak’s criterion [23], as the false alarm rate goes to zero. For the case
where the post-change distribution is unknown, Lorden [20] showed
that the Generalized Likelihood Ratio CuSum is asymptotically op-
timal for the case of finite multiple post-change distributions. Other
methods were also proposed for the case when the post-change dis-
tribution is unknown to a certain degree [22, 24–27].

In many applications, the assumption that the signal is generated
i.i.d. with distribution f before the change-point and i.i.d. with dis-
tribution g after the change-point over-simplifies the problem. One
example is the problem of fault detection using sensor readings from
an engine which can be running in two states, idle or active. In a typi-
cal fault detection scenario, the engine, which is originally in the idle
state, may switch to an active state resulting in a change in the statis-
tical property of the signal. However, this change is not of interest to
us. We are only interested in the change from the idle to faulty idle
state or the change from active to faulty active state. Furthermore,
the readings obtained during the faulty states depends on whether the
engine is in idle or fault state. We distinguish the changes the sig-
nal undergoes using the concept of a nuisance change and a critical
change. We seek to design a sequential change detection procedure
which ignores the nuisance change but detects the critical change
as quickly as possible. We model the nuisance and critical change
point using two approaches, Bayesian and non-Bayesian. In each of
these approaches, we propose a stopping rule which declares that a
critical change has taken place once the test-statistic exceeds a pre-
specified threshold. In the Bayesian formulation of the problem, the
stopping rule proposed is shown to be optimal. We further derive a
recursive scheme to compute our proposed test statistics efficiently.
Finally, we compare the proposed stopping times with a naive 2-
stage change detection procedure naive 2-stage procedures, which
attempt to detect the changes using separate optimal stopping pro-
cedures (i.e., the Shiryaev procedure in the Bayesian formulation,
and the CuSum procedure in the non-Bayesian formulation) for the
nuisance and critical changes, on simulated signals.

To the best of the authors’ knowledge, there are no existing
works that consider the QCD problem for a signal which may un-
dergo a change that is not of interest. Existing works in QCD which
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consider the problem where the observations are not generated i.i.d.
with distribution f before and i.i.d. with distribution g after the
change-point ν can be categorized into two main categories. In
the first category, the papers [28–30] consider the problem where
the pre-change distribution and the post-change distribution can be
modelled as a hidden Markov model (HMM). The authors of [30]
considers the problem where the vector parameter of a two-state
HMM changes at some unknown time. The second category of
papers [18, 31] consider a QCD problem with non i.i.d. observa-
tions. In [31], the authors extended the optimality of CuSum and
Shiryayev-Roberts stopping rule to a class of random processes with
likelihood ratios that are subjected to independence and stationary
conditions.Unlike the papers mentioned above, in this paper, the sig-
nal model we consider here has more than 2-states as a HMM in
the Bayesian setting. Furthermore, in the non-Bayesian setting, the
signal model cannot be modelled by a HMM. Also, the likelihood
ratios generated by the signal model considered in this paper are
non-stationary.

The rest of this paper is organized as follows. In Section 2, we
present our signal model and problem formulation. We propose stop-
ping times and derive the recursive update scheme for the test statis-
tics in their respective formulations is presented in Section 3 and 4.
In Section 5, we present numerical simulations to illustrate the per-
formance of our proposed stopping time. We conclude in Section 6.

2. PROBLEM FORMULATION

In this paper, we assume that the signals observed may be subjected
to two types of change, a critical change at νc and a nuisance change
at νn. We are interested in detecting the critical change while the
nuisance change is not of interest. In our signal model, the nuisance
change point also affects the distribution which generates the obser-
vations after the critical change point. This creates a dependence
between the nuisance change point and the distribution after the crit-
ical change point. Formally, the signal model can be described as
follows. Let f, fn, g, gn be distinct distributions and X1, X2, ... be
a sequence of random variables satisfying the following:

If νc ≤ νn 
Xt ∼ f i.i.d. for all t < νc,

Xt ∼ g i.i.d. for all νc ≤ t < νn.

Xt ∼ gn i.i.d. for all t ≥ νn.
else (1)

Xt ∼ f i.i.d. for all t < νn,

Xt ∼ fn i.i.d. for all νn ≤ t < νc.

Xt ∼ gn i.i.d. for all t ≥ νc.

where νn, νc ≥ 0 are the nuisance and critical change-points respec-
tively. We denote the distribution hνc,νn,t to be the distribution that
generatesXt when the nuisance change point is at νn and the critical
change point is at νc. The quickest change detection problem is to
detect the critical change νc as quickly as possible by sequentially
observing X1, X2, ..., while keeping the false alarm rate low.

In the Bayesian formulation of our QCD problem, the change-
points νn, νc are independent random variables modelled using a
zero-modified geometric distribution [32] where:

P (νi = k) =

{
αi if k = 0

(1− αi)ρi(1− ρi)k−1 if k > 0
(2)

where i ∈ {c, n}, αc and αn is the probability that the critical
and nuisance change (respectively) has already occurred when we
start observing the sequence, ρc and ρn is the conditional proba-
bility that the critical and nuisance change point (respectively) is
at time k given that the change has not taken place before time k.
Our Bayesian QCD problem can be formulated as an optimization
problem [15]: find a stopping time τ with respect to the filtration
{σ(Xt

1)}t≥0 with Xt
1 = X1, ..., Xt to minimize

P (τ < νc) + CE
[
(τ − νc + 1)+

]
(3)

where x+ = max{x, 0}, σ(Xt
1) is the sigma-algebra generated by

Xt
1 andC > 0 is a constant controlling the relative importance of the

false alarm P (τ < νc) and the expected delay E
[
(τ − νc + 1)+

]
.

In the non-Bayesian formulation of our QCD problem, the crit-
ical and nuisance change-points νc, νn are assumed to be unknown
but deterministic. We denote Eνc,νn to be the expectation assuming
the critical change-point is at νc and nuisance change-point is at
νn. Our quickest change detection problem can be formulated as a
minimax problem [20]: find a stopping time τ with respect to the
filtration {σ(Xt

1)}t≥0 to minimize WADD(τ) subject to ARL(τ) =
infνn≥1 E∞,νn [τ ] ≥ γ for some given γ where WADD(τ) =
supνc,νn≥1 ess supEνc,νn

[
(τ − νc + 1)+

∣∣Xνc−1
1

]
is the worst

case average detection delay and ARL(τ) is the average run length.

3. BAYESIAN QCD WITH NUISANCE CHANGE

In this section, we present the optimal stopping time τBayes for our
QCD problem (3) in the Bayesian formulation. We begin by pre-
senting a proposition [16] that transforms the cost function (3) into
an optimal stopping problem.

Proposition 1. Suppose E [νc] < ∞, E [τ ] < ∞ and define the
sequence {πk} by πk = P

(
νc ≤ k

∣∣σ(Xk
1 )
)

for k ≥ 0. Then, we
can write

P (τ < νc) + CE
[
(τ − νc + 1)+

]
= E

[
1− πτ + C

τ∑
m=0

πm

]
(4)

Since the prior of the critical change-point νc, given in (2), sat-
isfies E [νc] <∞ , we can rewrite the Bayesian QCD problem in (3)
as: find a stopping time τ with respect to the filtration {σ(Xt

1)}t≥0

to minimize E
[
1− πτ + C

∑τ
m=0 πm

]
. The optimal solution [16]

that minimize this cost function is of the form τBayes = inf{k ≥
0 |πk ≥ π∗} where π∗ is a threshold to be chosen. Furthermore, if
C ≥ 1, we have π∗ = 0.

In order to have an efficient implementation of the stopping time
τBayes, we will derive a recursive update scheme for πk. By applying
Baye’s rule [33], we obtain

πk = P
(
νc ≤ k

∣∣∣ σ(Xk
1 )
)
=

P(νc≤k,Xk1 )
P(Xk1 )

We introduce the probabilities µk,1, µk,2, µk,3, µk,4 where

µk,1 = P
(
νc > k, νn > k,Xk

1

)
µk,2 = P

(
νc > k, νn ≤ k,Xk

1

)
µk,3 = P

(
νc ≤ k, νn > k,Xk

1

)
µk,4 = P

(
νc ≤ k, νn ≤ k,Xk

1

)
,
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for k ≥ 0 so that πk can be written as

πk =
P(νc≤k,Xk1 )

P(Xk1 )
=

µk,3+µk,4
µk,1+µk,2+µk,3+µk,4

.

In order to obtain a recursive scheme for updating πk, we only need
to derive a recursive update scheme for updating the terms µk,i for
i = 1, ..., 4. For µk,1, using properties of the signal model, we have

µk+1,1 = P
(
νc > k + 1, νn > k + 1, Xk+1

1

)
= P

(
Xk+1

∣∣∣ νc > k + 1, νn > k + 1, Xk
1

)
× P

(
νc 6= k + 1, νn 6= k + 1

∣∣∣ νc > k, νn > k,Xk
1

)
× P

(
νc > k, νn > k,Xk

1

)
= f(Xk+1)(1− ρc)(1− ρn)µk,1.

For µk,2, we obtain

µk+1,2 = P
(
νc > k + 1, νn ≤ k + 1, Xk+1

1

)
= P

(
νc > k + 1, νn ≤ k,Xk+1

1

)
+ P

(
νc > k + 1, νn = k + 1, Xk+1

1

)
= fn(Xk+1) ((1− ρc)µk,2 + (1− ρc)ρnµk,1) .

For µk,3, using similar techniques as above

µk+1,3 = g(Xk+1) ((1− ρn)µk,3 + (1− ρn)ρcµk,1) .

Finally for µk,4, we have

µk+1,4 = P
(
νc ≤ k + 1, νn ≤ k + 1, Xk+1

1

)
= P

(
νc = k + 1, νn = k + 1, Xk+1

1

)
+ P

(
νc = k + 1, νn ≤ k,Xk+1

1

)
+ P

(
νc ≤ k, νn = k + 1, Xk+1

1

)
+ P

(
νc ≤ k, νn ≤ k,Xk+1

1

)
= gn(Xk+1) (ρcρnµk,1 + ρcµk,2 + ρnµk,3 + µk,4) .

Putting everything together, we obtain the following update scheme
for πk:

πk =
µk,3+µk,4

µk,1+µk,2+µk,3+µk,4

µk,1 = f(xk)(1− ρc)(1− ρn)µk−1,1

µk,2 = fn(xk) ((1− ρc)µk−1,2 + (1− ρc)ρnµk−1,1)

µk,3 = g(xk) ((1− ρn)µk−1,3 + (1− ρn)ρcµk−1,1)

µk,4 = gn(xk) (ρcρnµk−1,1 + ρcµk−1,2 + ρnµk−1,3 + µk−1,4) ,

where µ0,1 = (1 − αn)(1 − αc), µ0,2 = αn(1 − αc), µ0,3 =
(1− αn)αc and µ0,4 = αnαc.

4. NON-BAYESIAN QCD WITH NUISANCE CHANGE

In this section, we present the stopping time τGLRT based on the gen-
eralised likelihood ratio test (GLRT) for our QCD problem in the
non-Bayesian formulation. To motivate the design of our stopping

time, we consider the CuSum stopping time τCuSum and the CuSum
test statistic SCuSum(t):

τCuSum = inf {t ≥ 0 | SCuSum(t) ≥ β }

SCuSum(t) = max
1≤k≤t+1

t∑
i=k

log g(xi)
f(xi)

(5)

= log
max1≤k≤t+1

∏k−1
i=1 f(xi)

∏t
i=k g(xi)∏t

i=1 f(xi)
.

The CuSum test statistic SCuSum(t) can be interpreted as a GLRT
between the hypothesis that the change is currently in effect against
the hypothesis that no change has taken place. Applying this to our
QCD problem, we propose the following GLRT stopping time:

τGLRT = inf{t ≥ 0 | SGLRT(t) ≥ β}

SGLRT(t) = log
max1≤λc,λn≤t+1

∏t
i=1 hλc,λn,i(xi)

max1≤λn≤t+1
∏t
i=1 h∞,λn,i(xi)

(6)

where we stop the process once the test statistic SGLRT(t) exceeds
a threshold β. In order to efficiently update SGLRT(t), we derive
a recursive update scheme for both the numerator and denominator
within the logarithm. Firstly, we let

at =

t∏
i=1

ht+1,t+1,i(xi), bt = max
1≤λc≤t

t∏
i=1

hλc,t+1,i(xi)

ct = max
1≤λn≤t

t∏
i=1

ht+1,λn,i(xi), dt = max
1≤λc,λn≤t

t∏
i=1

hλc,λn,i(xi).

Splitting the domain of the maximization into 4 regions, we ob-
tain the following relation max1≤λc,λn≤t+1

∏t
i=1 hλc,λn,i(xi) =

max{at, bt, ct, dt}. Furthermore, each of the term at, bt, ct, dt can
be update recursively with a formula shown at the end of this sec-
tion. Similarly, by defining pt, qt to be pt =

∏t
i=1 h∞,t+1,i(xi)

and qt = max1≤λn≤t
∏t
i=1 h∞,λn,i(xi). It can be seen that the de-

nominator max1≤λn≤t+1

∏t
i=1 h∞,λn,i(xi) = max{pt, qt} and

we have the following update rules pt+1 = f(xt+1)pt and qt =
fn(xt+1)max{pt, qt}. Putting everything together, we have the fol-
lowing recursive update scheme for SGLRT(t):

SGLRT(t) = log max{at,bt,ct,dt}
max{pt,qt}

at = f(xt)at−1

bt = g(xt)max{at−1, bt−1}
ct = fn(xt)max{at−1, ct−1}
dt = gn(xt)max{at−1, bt−1, ct−1, dt−1}
pt = f(xt)pt−1

qt = fn(xt)max{pt−1, qt−1}

We note that the SGLRT(t) test statistics reduces the CuSum test
statistic when fn = f and gn = g.

5. NUMERICAL RESULTS

In this section, we compare the performance of our proposed stop-
ping time, under both frameworks, with the naive 2-step stopping
time which first attempts to detect for the change from f to fn or
g, and proceeds to detect for a change from fn to gn if a nuisance
change is detected in the first stage. We denoteN (µ, σ2) as the nor-
mal distribution with mean µ and variance σ2. In our simulations,
our signal is generated using the following distributions and parame-
ters f = N (0, 1), fn = N (0, 2), g = N (0.5, 1), gn = N (0.5, 2),
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αn = αc = 0.1 and ρc = ρn = 0.01. Here, the critical change is
a change in mean from 0 to 0.5 and the nuisance change is a change
in variance from 1 to 2.

5.1. Bayesian QCD with Nuisance Change

In the Bayesian formulation of our QCD problem, a naive solu-
tion to the QCD with nuisance change problem is a 2-stage proce-
dure. The naive stopping time τ2-stage is constructed from 3 stopping
times τf→fn ,τf→g and τfn→gn . These are the optimal stopping
times constructed using the Shiryaev’s procedure [16] to detect for
a change in distribution from f to fn, from f to g and from fn to
gn respectively. In the first stage, we apply both the stopping times
τf→g and τf→fn to the observations. If τf→g stops the process be-
fore τf→fn then we declare that a critical change has occurred and
τ2-stage = τf→g . Otherwise, we apply τfn→gn to the rest of the
observations and τ2-stage = τfn→gn . We denote the threshold for
declaring critical change as π∗c and threshold for declaring a nui-
sance change as π∗n.

In Fig. 1, we present the comparison of the trade-off between
false alarm probability and detection delay for the optimal stopping
time τBayes and the naive stopping time τ2-stage for different nuisance
change threshold α∗n. The results shows that our proposed stopping
τBayes outperforms the naive stopping time τ2-stage as expected.
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Fig. 1. Comparison of trade-off performance for the optimal stop-
ping time τBayes and naive stopping time τ2-stage with different nui-
sance change threshold π∗n.

5.2. Non-Bayesian QCD with Nuisance Change

We can use a naive 2-stage procedure for the problem of QCD
with nuisance change in the non-Bayesian formulation. The naive
stopping time ω2-stage is also constructed from 3 stopping times
ωf→fn ,ωf→g and ωfn→gn . In the non-Bayesian formulation, these
stopping times are the optimal CuSum based stopping times de-
scribed in (5). In the first stage, we apply both the stopping times
ωf→g and ωf→fn to the observations. If ωf→g stops the process
before ωf→fn , we declare that a critical change has occurred and
ω2-stage = ωf→g . Otherwise, we apply ωfn→gn to the rest of the ob-
servation after the stopping time ωf→fn and set ω2-stage = ωfn→gn .
We denote the threshold for declaring critical change as βc and
threshold for declaring a nuisance change as βn.

We present the comparison of the trade-off between the average
run length and average detection delay for the stopping times τGLRT

and ω2-stage for different nuisance change threshold βn in Fig. 2. Re-
sults from the simulation suggest our proposed stopping time τGLRT

out-performs the naive stopping ω2-stage.
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Fig. 2. Comparison of trade-off performance for the proposed stop-
ping time τGLRT and naive stopping time ω2-stage.

In Fig. 3, we present the graphs of the test statistic SGLRT (t) to-
gether with the observations x(t). The graphs in blue represent the
signal before the critical and nuisance change, in red represents the
signal after the critical change and in green represents the signal af-
ter the nuisance change. In Fig. 3a, the signal experiences a nuisance
change followed by a critical change. We observe that SGLRT(t) re-
mains low after the nuisance change and starts to rise after the critical
change. On the other hand, in Fig. 3b, the signal experiences a criti-
cal change followed by a nuisance change. We observe that SGLRT(t)
rises steadily after the critical change and continues to rise after the
nuisance change. It can be seen that our test statistics SGLRT(t) is
able to quickly react to a critical change while ignoring the nuisance
change.
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Fig. 3. Examples of SGLRT (t) values with different choices of
νc, νn. (a)νc = 2730, νn = 1365 (b) νc = 1365, νn = 2730.

6. CONCLUSION AND FUTURE WORK

We have studied both the Bayesian and non-Bayesian QCD problem
where the signal may be subjected to a nuisance change. For the
Bayesian QCD problem, we derived a recursive update scheme for
the optimal stopping time. For the non-Bayesian QCD problem, we
design a stopping time based on the GLRT statistic. We also derived
a recursive update scheme for the proposed test statistic. The nu-
merical simulations we ran suggests that the GLRT based stopping
time outperforms the naive 2-stage CuSum stopping time. In future
work, we will study more general signal models to include signals
nuisance changes which are transient and also signal models with
multiple post-change hypotheses.
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