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ABSTRACT

In massive machine-type communication (mMTC) systems,
a large number of machine-type devices sporadically trans-
mit small packets with low rates. By exploiting the sporadic
activity of machine-type devices, we can cast the detection
problem as the compressive sensing-based multi-user detec-
tion (CS-MUD). In this paper, we propose a novel CS-MUD
algorithm for the active user and symbol detection based on
a maximum a posteriori probability (MAP) criterion. By
exchanging extrinsic information between active user detec-
tor and symbol detector, the proposed algorithm improves
the performance of active user detection and the reliability of
symbol estimate. Numerical simulations demonstrate that the
proposed algorithm achieves outstanding MUD performance.

Index Terms— massive machine-type communications,
compressive sensing-based multi-user detection, maximum
a posteriori probability.

1. INTRODUCTION

In recent years, a large number of devices are connected to
the internet via wireless links [1]. In accordance with this
trend, ITU defined massive machine-type communication
(mMTC) as one of the important use cases for the next gen-
eration (5G) wireless systems [2]. The mMTC is distinct
from human-centric communication in that mMTC traffic is
uplink-dominated and a large number of devices sporadically
transmit short-sized packets with low rates. Since the number
of active devices is very small, that is, the transmit symbol
vector is sparse, the multi-user detection (MUD) problem
can be formulated as a sparse signal recovery problem. Note
that when the underlying vector to be recovered is sparse,
compressive sensing-based multi-user detection (CS-MUD)
outperforms the classical MUD such as linear least-square
(LS) and minimum mean square error (MMSE) [3].
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Due to the computational benefit and competitive per-
formance, greedy algorithms have been popularly used in
mMTC scenarios [4–6]. The greedy algorithm iteratively
finds support, i.e., the index set of non-zero elements, and
then removes their vestiges from the received signal in a
greedy fashion [7–9]. For details, readers are referred to [10].

In this paper, we propose a greedy algorithm that detects
active devices and symbols based on a maximum a posteri-
ori probability (MAP) criterion. The conventional greedy al-
gorithms choose the index of the active device by the maxi-
mum correlation between the received vector and the column
vector of the channel matrix [7–9]. However, the correla-
tion may not be the right decision statistic, in particular, in
under-determined systems where the correlation between two
column vectors are large. The proposed algorithm is distinct
from these approaches in that we identify the active devices
using the a posteriori activity probability-based decision rule.
Furthermore, we exploit a finite alphabet constraint (a symbol
is drawn from a finite discrete alphabet) to improve the reli-
ability of a posteriori symbol probability. Specifically, using
the finite alphabet constraint, we compute the soft symbol in-
formation on the device activity and also what elements of
the alphabet is likely to be the transmit symbol. By exchang-
ing the extrinsic information between an active user detector
and a symbol detector, the proposed algorithm improves the
reliability of the soft symbol information. From the numeri-
cal evaluations, we show that the proposed algorithm outper-
forms conventional greedy algorithms and achieves substan-
tial enhancement in active user and symbol detection perfor-
mance.

Notation: Boldface lower and upper-case characters rep-
resent column vectors and matrices, respectively. HS (hS ) is
the submatrix (subvector) with columns (elements) indexed
by S. A, |A|, and Aj are the complementary set, cardinality,
and j-th element of a set A, respectively. R{·} denotes the
real part of the complex number. Lastly, {xk}k=1:K repre-
sents {x1, x2, · · · , xK}.
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Fig. 1. The illustration of an mMTC uplink scenario.

2. SYSTEM MODEL

We consider the uplink of slot-synchronized mMTC systems
where N devices (hereafter, called users) are sporadically ac-
cessing a base station (BS) on an identical time-slot basis (see
Fig. 1). The symbol of each user is uniformly drawn from
a finite alphabet A if the user is active, and zero otherwise.
The symbol is then spread with a user-specific sequence with
a length of M . We assume that the n-th user is active with
probability of pn and the user activities are independent of
each others. In this setup, the received signal vector y ∈ CM

at the BS can be described as

y = Hx + v (1)

where H = [h1,h2, · · · ,hN ] ∈ CM×N is a channel matrix
capturing spreading sequences and fading channels between
users and the BS, x ∈ CN is a symbol vector of all (active
and inactive) users, and v is a complex Gaussian noise vector
(v ∼ CN (0, σ2

vIM )). In mMTC scenarios, since the system
is underdetermined (N � M ), it is in general not possible
to recover x. However, since only a few users are active at a
time (pn � 1), x can be readily modeled as a sparse vector so
that x can be recovered by a compressive sensing technique.

3. PROPOSED MAP-BASED ACTIVE USER AND
SYMBOL DETECTION

In this section, we propose MAP-based active user and sym-
bol detection algorithm to recover the sparse symbol vector.
The proposed algorithm iteratively finds an active user using a
MAP-based active user detector (MAP-AUD) and then com-
putes the soft symbol information of all detected users us-
ing a MAP-based symbol detector (MAP-SD) (see Fig. 2).
By exchanging the extrinsic information (LE1/LE2 ) between
MAP-AUD and MAP-SD, the proposed algorithm improves
the performance of the active user detection and the reliability
of the symbol estimate. In the sequel, the subscripts, ’1’ and
’2’, denote MAP-AUD and MAP-SD, respectively.

3.1. Symbol Activity Log-Likelihood Ratio

In this work, we use the log-likelihood ratio (LLR), which is
the useful metric to extract extrinsic information from a pos-
teriori information. The symbol activity LLR of a symbol
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Fig. 2. The block diagram of the proposed algorithm.

xn indicates the level on which the element of alphabet A is
active and defined as

Ln,j (y) = ln
P (xn = Aj | y)
P (xn = 0 | y)

= ln
P (y | xn = Aj)

P (y | xn = 0)︸ ︷︷ ︸
LE,n,j(y)

+ ln
P (xn = Aj)

P (xn = 0)︸ ︷︷ ︸
LA,n,j

(2)

whereLE,n,j andLA,n,j are the extrinsic and a priori compo-
nents, respectively. Since {LE,n,j}j=1:|A| can be converted
into {P (y|xn=Aj)}j=1:|A|∪{P (y|xn=0)} and vice versa,
{LE,n,j}j=1:|A| can be used as extrinsic soft symbol infor-
mation on xn.

3.2. MAP-based Active User Detection

Let S be the support of the previous iteration, then MAP-
AUD finds a support index n∗ ∈ S based on the generalized
log-likelihood ratio test (GLRT) [11] and then delivers the
soft symbol information {LE1,n∗,j} to MAP-SD. That is,

n∗ = argmax
n∈S

(
max

j
Ln,j (y)

)
= argmax

n∈S

(
max

j
LE1,n,j (y) + LA1,n,j

)
. (3)

Using a priori user activity probability pn and equi-probable
alphabet assumption, we have

LA1,n,j = ln
P (xn ∈ A)
|A|P (xn = 0)

= ln
pn

(1− pn)
− ln |A|. (4)

Exploiting the extrinsic symbol information on xn (n ∈ S)
delivered from MAP-SD, we further have

LE1,n,j (y)

= ln
P (y | xn = Aj)

P (y | xn = 0)
= ln

ExS

[
P (y | xn = Aj ,xS)

]
ExS

[
P (y | xn = 0,xS)

]
(a)
≈ ln

ExS

[
exp

(
−
∥∥∥∥y −HSxS −Ajhn

∥∥∥∥2
C−1

n

)]

ExS

[
exp

(
−
∥∥∥∥y −HSxS

∥∥∥∥2
C−1

n

)]
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(b)
≈ ln

exp

(
ExS

[
−
∥∥∥∥y −HSxS −Ajhn

∥∥∥∥2
C−1

n

])

exp

(
ExS

[
−
∥∥∥∥y −HSxS

∥∥∥∥2
C−1

n

])
= R

{(
2Aj (y −HSE[xS ])− |Aj |2hn

)H
C−1n hn

}
(5)

where (a) is from the Gaussian approximation of the interfer-
ence and (b) is from the assumptions that the support indices
chosen in the previous iterations are perfect and the symbol
detection errors are also negligible. Under these assumptions,
Ex[exp(f(x))] ≈ exp(f(x∗)) ≈ exp(Ex[f(x)]) where x∗

is the symbol estimate in the previous iterations. In (5), the
covariance matrix of the interference-plus-noise vector is

Cn = Cov (HSxS − xnhn + v) , (6)

and using the extrinsic information delivered from MAP-SD,
E[xS ] is expressed as

E[xn] =

|A|∑
j=1

P (xn = Aj)Aj =

∑|A|
j=1 exp(LE2,n,j)Aj

1 +
∑|A|

j=1 exp(LE2,n,j)
.

(7)

From (4) and (5), we can find the support index n∗ and obtain
the soft symbol information on xn∗ (i.e., {LE1,n∗,j}) to be
delivered to MAP-SD. Note that only extrinsic information is
delivered to MAP-SD. This extrinsic information is used as
a priori information for MAP-SD to update the soft symbol
information of the previously detected symbols.

3.3. MAP-based Symbol Detection

MAP-SD updates the soft symbol information on xn (n ∈ S).
Let Tn be S ∪ {n∗} − {n}. Similar to MAP-AUD, MAP-SD
re-calculates LE2,n,j (n ∈ S) as

LE2,n,j (y)

= ln
P (y | xn = Aj)

P (y | xn = 0)
= ln

ExTn

[
P (y | xn = Aj ,xTn)

]
ExTn

[
P (y | xn = 0,xTn)

]
≈ R

{(
2Aj (y −HTnE[xTn ])− |Aj |2hn

)H
Γ−1hn

}
(8)

where

Γ = Cov (HSxS − xn∗hn∗ + v) . (9)

By denoting LE2,n,j of the previous iteration as L̃E2,n,j , we
have

E[xn] =


∑|A|

j=1 exp(LE1,n,j)Aj

1+
∑|A|

j=1 exp(LE1,n,j)
if n = n∗,∑|A|

j=1 exp(L̃E2,n,j)Aj

1+
∑|A|

j=1 exp(L̃E2,n,j)
otherwise.

(10)

Note that the soft symbol information {LE2,n,j}n∈S is re-
fined by MAP-SD since xn∗hn∗ is cancelled from the total in-
terference (see (9)). After updating the soft symbol informa-
tion only on xn (n ∈ S), the support index n∗ and {LE1,n∗,j}
are added to S and {LE2,n,j}, respectively. The augmented
soft symbol information is fed back to MAP-AUD for the next
iteration.

3.4. Interference-Plus-Noise Covariance Matrices

In computing LE1,n,j in (5) and LE2,n,j in (8), we need to
compute the inverse of Cn and Γ (see (6) and (9)). Since
this computation is too burdensome, we approximate the co-
variance matrices as diagonal matrices. Let l be the iteration
index, then under the assumption that the user-specific spread-
ing sequence is randomly generated, we can easily show that

Γ(l) = Cov
(
HS(l−1)xS(l−1) − xn∗hn∗ + v

)
=
∑

n∈S(l) βnhnhH
n + σ2

vIM

≈ diag
(∑

n∈S(l) βnhnhH
n

)
+ σ2

vIM

=
∑

n∈S(l) βndiag
(
hnhH

n

)
+ σ2

vIM (11)

where βn = E[|xn|2] = (1/|A|)
∑|A|

j=1 pn|Aj |2 and diag(·)
is a diagonal matrix only with diagonal elements. Using this
diagonal approximation, we have

Γ(0) = diag
(
HBHH

)
+ σ2

vIM ,

C(l)
n = Γ(l−1) − βndiag

(
hnhH

n

)
,

Γ(l) = C
(l)
n∗ , (12)

where B = diag
(
[β1, β2, · · · , βN ]T

)
. Since all of C

(l)
n and

Γ(l) are diagonal, it is easy to inverse them.
The iteration lasts until all active users are detected. After

completing the iteration, we decide x̂; x̂n = Aj∗n
where j∗n =

argmaxj LE2,n,j if n ∈ S, and 0 otherwise. The proposed
algorithm is summarized in Algorithm 1.

4. NUMERICAL RESULTS

We simulate an under-determined mMTC system with N =
128 users and unit-norm random spreading sequences with
a length of M = 64. We consider frequency-flat Rayleigh
fading channels between users and the BS from CN (0, 1).
We set the activities of all users to 0.05 (i.e., pn = 0.05).
Data symbols are modulated by BPSK. We assume that the
BS has perfect knowledge of the channel matrix H. We stop
the iteration when ‖r(l+1) − r(l)‖ < 10−4 or the number of
iterations reaches 16. Note that r(l) = y − HS(l)E[xS(l) ]
(see (5)). As a performance measure, we use the successful
AUD probability and the net symbol error rate (SER) which
corresponds to the SER of active users.
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Algorithm 1 MAP-based Active User and Symbol Detection
Input: y,H,A, σ2

n, {pn}Nn=1

Output: x̂
1: // Initialization
2: S(0) = ∅, {LE2,n,j} = ∅, l = 0
3: Γ(0) = diag(HBHH) + σ2

vIM // See (12).
4: repeat
5: l = l + 1
6: // MAP-based Active User Detection
7: for n ∈ S(l−1) do
8: C

(l)
n = Γ(l−1) − βndiag(hnhH

n )
9: for j = 1, · · · , |A| do

10: LE1,n,j // See (7) for E[xS ].

11: =R
{(
2Aj (y−HSE[xS ])−|Aj |2hn

)H
C−1n hn

}
12: end for
13: end for
14: n∗ = argmaxn∈S ((maxj LE1,n,j) + ln pn/(1− pn))
15: // MAP-based Symbol Detection
16: Γ(l) = C

(l)
n∗

17: for n ∈ S(l−1) do
18: Tn = S(l−1) ∪ {n∗} − {n}
19: for j = 1, · · · , |A| do
20: LE2,n,j // See (10) for E[xS∪{n∗}].

21: =R
{(
2Aj (y−HTnE[xTn ])−|Aj |2hn

)H
Γ−1hn

}
22: end for
23: end for
24: // Augmentation
25: S(l) = S(l−1) ∪ {n∗},
26: {LE2,n,j}(l) = {LE2,n,j}(l−1) ∪ {LE1,n∗,j}
27: until stop conditions are met.
28: // Final result
29: x̂n =

{
Aj∗n where j∗n = argmaxj LE2,n,j if n ∈ S,
0 otherwise.

We compare the proposed algorithm with Linear MMSE
(LMMSE), Orthogonal Matching Pursuit (OMP) [7], Soft-
feedback OMP (SF-OMP) [12], and Fast Bayesian Matching
Pursuit (FBMP) [13]. In particular, we use Genie-Aided SF-
OMP (GA-SF-OMP) with perfect knowledge of the interfer-
ence variance in each iteration. As a lower bound, we use the
performance of the Oracle MMSE detector which perfectly
knows the support of x. Note that the proposed algorithm,
GA-SF-OMP, and FBMP exploit a priori user activity proba-
bilities.

Fig. 3 (a) shows the AUD success probability. We observe
that the proposed algorithm outperforms the other algorithms
under test. LMMSE shows very poor performance because
the system is under-determined. Overall, algorithms exploit-
ing a priori user activity probabilities exhibit better perfor-
mance than those without exploiting it. In Fig. 3 (b), we plot
the net SER. We observe that the net SER of the proposed al-
gorithm are much smaller than those of the other algorithms.
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Fig. 3. Performances of the proposed algorithm: (a) AUD
success probability, (b) Net SER.

In particular, the performance gap increases in the high SNR
regime because our assumption (the previous detection of ac-
tive users and symbols are perfect) becomes accurate.

5. CONCLUSION

In this paper, we proposed a novel MAP-based active user
and symbol detector for mMTC systems. The proposed al-
gorithm finds the active users and detects the symbol in a
greedy fashion by exploiting the sparsity of the actually ac-
tive users in mMTC system The proposed scheme consists
of MAP-AUD and MAP-SD. By exchanging extrinsic infor-
mation between each other, the proposed algorithm improves
the performance of the active user detection and the reliability
of the symbol estimate. We have demonstrated that our pro-
posed algorithm achieves a substantial gain over conventional
greedy algorithms.
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