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ABSTRACT

We propose a collision-avoidance tracker for agents with a direc-
tional sensor that aim to maintain a moving target in their field of
view. The proposed tracker addresses the view maintenance issue
within an Optimal Reciprocal Collision Avoidance (ORCA) frame-
work. Our tracking agents adaptively share the responsibility of
avoiding each other and minimise with a smooth actuation the devia-
tion angle from their heading direction to their target. Experimental
results with real people trajectories from public datasets show that
the proposed method improves view maintenance.

Index Terms— Target following; active directional sensors;
multi-agent systems; collision avoidance.

1. INTRODUCTION

A camera-equipped robot (agent) that autonomously follows a per-
son in public places can provide various types of services or assis-
tance. In public spaces, multiple agents may concurrently follow
their target and therefore need to avoid collisions with other agents
and targets (e.g. people). In multi-agent collision avoidance, reci-
procity is important to avoid undesirable oscillations [1]. Reciprocity
can be achieved when agents use the Optimal Reciprocal Collision
Avoidance (ORCA) method [1, 2, 3, 4, 5, 6, 7, 8, 9]. With ORCA
agents derive a set of velocities that will allow them to avoid colli-
sions with nearby moving agents. Each agent then selects from this
set the collision-free velocity that is the closest one to its preferred
velocity (i.e. the velocity the agent would maintain in absence of ob-
stacles). Moreover, for target following with a directional sensor,
such as a camera, agents need to guarantee view maintenance, i.e. to
keep the moving target at a certain distance and centred within the
field of view (FoV). Therefore the collision-free velocities should
further account for view maintenance, a constraint that - to the best
of our knowledge - has not been explored in the literature yet.

In this paper we propose a view-maintenance method for colli-
sion avoidance manoeuvres. To enable smooth actuation when an
agent heads towards its target, we adaptively set the feedback errors
to compute the agent control from the collision-free velocity based
on both the deviation angle and its derivative. Furthermore, we in-
corporate the relative risk of view loss to adapt the pair-wise respon-
sibility so that agents whose risk of losing the view of their target
is higher can reduce their share of responsibility and move more
closely to their preferred velocity. We validate the proposed method
with people trajectories extracted from publicly available datasets
and demonstrate the improvements in view maintenance with the
proposed method.

Fig. 1. Multiple agents (green) with a directional sensor follow their
target (red). The goal of each agent is to maintain, despite the pres-
ence of multiple moving obstacles, its target at a certain desirable
distance and viewing angle.

2. VIEW-AWARE CONCURRENT TARGET FOLLOWING

2.1. Preliminaries

Let multiple agents coexist in a shared area and let each agent fol-
low one target at a time (Fig. 1). Each agent ci is disk-shaped with
radius r and position pi(t) at time t. Each agent has a directional
sensor with a sector-shaped FoV whose orientation is the same as
the agent’s heading direction.

Each target on is modelled as a disk of radius r and has position
pn(t) at time t. Let din(t) be the distance between ci and its tar-
get on at time t and δin(t) ∈ (−π, π] be the deviation angle from
the agent heading direction to on (Fig. 1). Each ci computes the
control vector ui(t) to maintain its target on at a certain desirable
distance d∗in in the agent’s heading direction (i.e. din(t) = d∗in and
δin(t) = 0), while avoiding collisions with other agents and targets
(i.e. dij(t) > 2r,∀j, j 6= i and din(t) > 2r, ∀n).

We assume that ci knows which target to follow, receives (or
infers) the preferred velocities of nearby agents and targets, and re-
ceives (or estimates) the positions of nearby agents and targets via
an external tracker [2, 5] or via cooperative tracking [10, 11].

2.2. Collision-avoiding velocities

Let ci and cj at position pi and pj , respectively (to simplify the
notation we will omit t), aim to achieve their respective preferred
velocity v∗i and v∗j (Fig. 2(a)). Each agent ci then exchanges its pre-
ferred velocity with neighbouring agents and derives the pair-wise
velocity constraints induced by each of its neighbouring agents and
targets using ORCA with adaptive responsibility sharing.

A collision-free velocity, vAi , is obtained from which we com-
pute a feasible control ui that minimises the deviation angle of the
agent’s heading direction from its target.
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Fig. 2. Optimal reciprocal collision-avoiding velocities. (a) Agent ci
and cj with radius r at pi and pj with their preferred velocity v∗i and
v∗j , respectively. (b) The grey area indicates the relative velocities
of ci that are collision-avoiding with cj in τ time steps (Aτi,j(0)).
mi,j is the minimal velocity for v∗i,j to get out of the velocity ob-
stacle (starting from v∗i,j to the closest point at the boundary of the
velocity obstacle). ni,j is the outward normal. (c) The grey area
indicates the velocities of ci that are optimal reciprocal collision-
avoiding with cj in τ time steps (A∗,τi,j ) by sharing ai,j responsibility
to avoid cj .

Let the target on of agent ci be at pn with velocity vn. If vmax
is the maximum agent speed, then we compute v∗i as:

v∗i = ein max
(

min
(

(d̃in − d∗in)/To, vmax
)
,−vmax

)
, (1)

where To is temporal interval during which the velocity will be main-
tained (To = 1s when the velocity is maintained for one second), d̃in
is the distance between the position pi of agent ci and the predicted
target position p̃n estimated using the current target velocity. ein is
the unit vector indicating the direction from pi towards p̃n.

With knowledge of the preferred velocities of nearby agents and
targets, each agent then derives the pair-wise velocity constraint in-
duced by each its nearby agent and target. We first derive the Veloc-
ity Obstacle (VO) of ci induced by cj , i.e. the set of velocities of ci
that can lead to a collision with cj in a time horizon τ [12]. In the
relative velocity space of cj (as shown in Fig. 2(b)), let Oτ

i,j(0) be
the VO of ci induced by cj assuming that cj moves at its preferred
velocity, i.e. 0:

Oτ
i,j(0) = {v | ‖tv‖ >

∥∥pij − 2r
∥∥ , t ∈ [0, τ ]}, (2)

where pij is the relative position of cj with respect to ci. The set
of collision-avoiding relative velocities for ci to avoid cj in τ time
horizon, Aτi,j(0), can be therefore represented as Aτi,j(0) = {v | v /∈
Oτ
i,j(0)}.

Reciprocal collision avoidance is possible when ci and cj choose
to move at vi ∈ Aτi,j(vj) and vj ∈ Aτj,i(vi), respectively [1]. When
v∗i,j lies within the VO as shown in Fig. 2(b), ORCA shifts v∗i,j out
of the VO with a minimal effort that is contributed by both agents.

Let mi,j be the minimal relative velocity change to avoid col-
lisions. Therefore mi,j is the vector starting from v∗i,j to the clos-
est point at the boundary of the VO. ni,j is the plane normal at
v∗i,j + mi,j with the direction pointing outside the VO.

2.3. Adaptive responsibility

Agents share the responsibility for avoiding a collision. Let ai,j and
aj,i be the responsibility shared by ci and cj to avoid each other and

ai,j + aj,i = 1. The set of optimal reciprocal collision-avoiding
velocity for ci to avoid cj in τ time steps is defined as:

A∗,τi,j = {v | v− (v∗i + ai,jmi,j) · ni,j 6 0}. (3)

As shown in Fig. 2(c), A∗,τi,j are the velocities in the grey half-
plane at the direction of ni,j . The set of collision-avoiding velocities
of cj induced by ci, i.e. A∗,τj,i , can be constructed in the same way.

Let A∗,τi,n be the set of velocities of ci that are collision-avoiding
with on in τ time steps. If CAi and ΛAi are the set of agents and tar-
gets within the avoidance range, then the set of accessible velocities
of ci that are collision-avoiding with all agents and targets is:

A∗,τi =

 ⋂
cj∈CA

i

A∗,τi,j

 ∩
 ⋂
on∈ΛA

i

A∗,τi,n

 ∩ Vi, (4)

where Vi is the set of accessible velocities under speed/acceleration
limits.

The new collision-free velocity vAi lies within A∗,τi and is the
closest to v∗i . Note that A∗,τi = ∅ can occur when ci is densely
surrounded by agents or targets. This problem can be addressed by
allowing the agent to intrude slightly the velocity constraints until at
least one accessible velocity is found [1].

The choice of the pair-wise responsibility influences the number
and distribution of the accessible collision-free velocities of the pair
of agents [13, 14]. Unlike [1, 2, 5, 15, 16] that share the responsibil-
ity equally, we adapt the responsibility based on the risk of an agent
losing its target, which can be measured as velocity difference, ∆v∗i ,
between the preferred velocity v∗i and the current velocity vi.

Let qi be the risk of ci losing its target. We compute this risk as
qi = e‖∆v∗i ‖. The responsibility ai,j that ci shares with cj depends
on the difference between qi and qj . To obtain a continuous and
bounded value we adopt the Jain’s fairness measure to quantify how
alike two values are [17]. The fairness, %ij , between qi and qj is:

%ij =
1

2

(qi + qj)
2

qi2 + qj2
, (5)

where %ij ∈ [0.5, 1], with %ij = 0.5 being the least fair case and
%ij = 1 being the fairest case.

We finally compute the responsibility for ci to avoid cj , ai,j , as:

ai,j =

{
%ij − 0.5 qi > qj
1.5− %ij qi 6 qj

, (6)

where the two constants 0.5 and 1.5 ensure that ai,j ∈ [0.5, 1] . We
then compute in the same way the responsibility aj,i for cj to avoid
ci.

2.4. Minimisation of the deviation angle

Each agent computes a feasible control from vAi . Let pAi be the tem-
porary goal position of ci set by vAi (Fig. 3). Let ϕAi ∈ (−π, π]
be the angle from the agent’s heading direction to pAi . It is common
to compute the control ui based on the feedback of the distance er-
ror, di,e, between pi and pAi and the angle error, ϕi,e, from current
agent’s heading to pAi . The agent can either move forward, i.e. pos-
itive di,e, while turning ϕAi to the right side of the agent, or move
backward, i.e. negative di,e, while turning the complement angle
of ϕAi to the left side of the agent. Works on multi-agent naviga-
tion set di,e positive [4, 5, 15, 18] as the agent’s heading is of little
importance, while we minimise the deviation angle δin by properly
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Fig. 3. Agent ci at pi has to reach pAi due to the collision-free veloc-
ity vAi . ϕAi is the angle from the agent’s heading to pAi . Two options
can reach pAi but Option 2 results in a view loss.

setting the sign of di,e in order to avoid unnecessary view loss on
targets (Option 2 in Fig. 3).

Let d+
i,e and ϕ+

i,e be the distance error and the angular error of a
forward movement, respectively, that can be computed as:

d+
i,e =

∥∥∥vAi
∥∥∥

ϕ+
i,e = ϕAi . (7)

Correspondingly, d−i,e and ϕ−i,e are the distance and angular error of
a backward movement:

d−i,e = −
∥∥∥vAi

∥∥∥
ϕ−i,e = ϕAi − sign(ϕAi )π. (8)

We compute the candidate control vectors of the two options
using the feedback-based method in [19]. Let X be either + or −
and uXi =

[
vXi , ω

X
i

]
be the control vector with vXi for the speed

control and ωXi for the steering control. The resulted deviation angle
in ∆T time, δXin(∆T ), given the control uXi can then be computed
as δXin(∆T ) = δin + ∆δXin, where ∆δXin is the difference of the
deviation angle between two consecutive time steps. When agents
follow a differential-drive kinematic model then

∆δXin = −ωXi ∆T +
vXi ∆T

din
sin(δin). (9)

To minimise the deviation angle, one can select the direction of
movement (forward or backward) that leads to a smaller |δin(∆T )|.
However, oscillations can occur due to direction flipping when the
target direction is orthogonal to vAi . To address this problem and
achieve smooth motion, we first select a candidate movement direc-
tion that leads to a smaller |∆δin|. If the resulting |∆δin(∆T )| >
π
2

, i.e. the agent heading opposite to its target, the direction with a
smaller |δin(∆T )| is selected. Otherwise, the candidate movement
direction is the final movement direction and the corresponding con-
trol vector is used to update the agent’s state, i.e. the position and
heading direction.

3. VALIDATION

We compare Differential-Drive agents moving with DD-AR-DM,
the proposed method using Adaptive Responsibility sharing and De-
viation angle Minimisation, against DD-AR, the same method using
only Adaptive Responsibility sharing, and DD-DM, using only De-
viation angle Minimisation, as well as DD, Snape’s method [5]. We
base the implementation on the RVO21 library.

1http://gamma.cs.unc.edu/RVO2. Last accessed: 27/10/2017

(a) (b)
Fig. 4. Trajectories of Scenario (a) I and (b) II. Numbers are the
indices and starting positions of targets. The red intensity increases
over time.

Targets are initialised at the agent’s heading direction at the de-
sired agent-target distance, d∗in = 2m. The maximum speed of the
agents is vmax = 2m/s. The maximum speed of targets is smaller
than that of the agents to guarantee the capture of targets. The agent
avoidance range is set to 2vmax, which is the worst case for a colli-
sion between a pair of agents in one second. We set the time horizon
τ = 3 for a moderate avoidance aversion [2]. The radius of agents
and targets, r, is 0.3m and is set to 0.6m when deriving the velocity
constraints to compensate for tracking errors [5].

We consider two scenarios. Scenario I is a 30m × 30m area
with 10 trajectories of 60s from S2L1 sequence of the PETS2009
dataset2. The sequence contains people walking with various pat-
terns, such as meeting and random walking (Fig. 4 (a)). Scenario
II is a 20m × 20m area with 7 trajectories of 16s from the ETH
Walking Pedestrian Hotel sequence3. The sequence contains the tra-
jectories of two groups of pedestrians intersecting each other from
opposite directions (Fig. 4 (b)).

As performance measures we consider deviation angle and dis-
tance maintenance. The deviation angle, ηδi , is measured as per-
centage of simulation time T during which the absolute value of the
deviation angle from the agent heading towards its target is smaller
than an error bound δE :

ηδi =
1

T

T∑
t=1

|δin(t)| 6 δE . (10)

The distance maintenance, ηdi , is measured as percentage of
simulation time T during which the difference between the actual
agent-target distance and the desired distance is smaller than an er-
ror bound dE :

ηdi =
1

T

T∑
t=1

|din(t)− d∗in| 6 dE . (11)

As the choice of the deviation angle error bound δE and the
distance error bound dE influences the view maintenance results,
we perform the evaluation with varying error bound values: δE ∈
[0◦, 90◦] with a 9◦ step; and dE ∈ [0, 1]m with a 0.1m step.

Fig. 5 shows the average deviation angle performance and the
distance maintenance performance for all agents in Scenario I and II.
Adaptive responsibility sharing (DD-AR) outperforms DD in main-
taining the agent-target distance regardless of the value of dE , but

2http://www.cvg.reading.ac.uk/PETS2009. Last accessed: 27/10/2017
3http://www.vision.ee.ethz.ch/en/datasets. Last accessed: 27/10/2017
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(a) (b)

(c) (d)

Fig. 5. Performance at various δE and dE . Scenario I: (a) average
deviation angle maintenance and (b) average distance maintenance;
Scenario II: (c) average deviation angle maintenance and (d) average
distance maintenance performance.

not in maintaining the deviation angle. DD computes the control
from the collision-free velocity only accounting for forward mo-
tions, which easily causes the agent to head opposite to its target
when the collision-free velocity is backwards or people move back
and forth. DD-DM improves the deviation angle performance of
DD. The average deviation angle ratio of DD-DM reaches 100% at
δE = 90◦, as the algorithm avoids the agent heading opposite to its
target, i.e. when the absolute deviation angle is larger than 90◦. This
can be observed from Fig. 6, which shows the deviation angle and
the agent-target distance of agent 6 that experiences frequent back-
ward collision-free velocities in Scenario I.

DD-DM maintains the deviation angle at the cost of a reduced
distance maintenance performance, because DD-DM forces the
agent to head towards its target, which can cause an agent devi-
ate from its desired agent-target distance due to the adjustments
of agent heading. On the other hand, by adding the adaptive re-
sponsibility sharing to DD-DM, i.e. DD-AR-DM, the best deviation
angle maintenance performance is achieved regardless of the value
of δE . Moreover, DD-AR-DM improves the distance maintenance
performance compared to DD-DM, but not compared to DD-AR.

On average, DD-AR-DM improves the deviation angle by 26%
and 20% compared to DD in Scenario I and Scenario II, respectively.
The performance improvement on the deviation angle in Scenario I
is higher than that in Scenario II where the trajectories have forward
motion only, while in Scenario I people also turn backwards.

Fig. 7 shows snapshots of agents’ trajectories in Scenario I with
DD and DD-AR-DM at the time step 310. We observe that with
DD agent 2 and 3 head opposite to their target when the targets are
turning back (Fig. 7(a)), whereas with DD-AR-DM, agent 2 and 3
can maintain their heading direction towards their target (Fig. 7(b)).
Similar behaviour exists when the collision-free velocity is back-
wards, for example, agent 0.

The average travel distance of agents with DD, DD-AR, DD-
DM and DD-AR-DM in Scenario I are 28m, 28.5m, 24.2m and
25m, respectively, and in Scenario II are 15m, 15m, 16.5m and 15m,
respectively. The deviation angle minimisation affects the travel

(a) (b)
Fig. 6. Deviation angle (a) and agent-target distance (b) over time
for agent 6 in Scenario I using different methods.

(a)

(b)
Fig. 7. Agent trajectories in Scenario I at time step 310 using (a)
DD and (b) DD-AR-DM. Agents (green) follow their target with the
same index (red). The heading direction of an agent is indicated by
a triangle with increasing intensity over time. Circles indicate the
collision avoiding range. Selected areas are magnified.

distance more than adaptive responsibility sharing. Demonstration
videos can be found here4.

4. CONCLUSIONS

We proposed a target following method that accounts for view main-
tenance in terms of view angle and agent-target distance in an Opti-
mal Reciprocal Collision Avoidance framework. To address the view
maintenance objective during collision avoidance manoeuvres, the
proposed algorithm adapts the pair-wise responsibility based on the
relative risk for agents to lose their targets and minimises smoothly
the agent deviation angle from its target when computing the feasible
control. We validated the proposed method with real people trajec-
tories. Future work will validate the proposed method on robotic
platforms with real-time sensing, control and actuation.

4http://www.eecs.qmul.ac.uk/~andrea/vorca.html
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