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ABSTRACT

The use of autonomous systems (ASs), such as humanoid
robots, drones or self-driving vehicles, has expanded signifi-
cantly in recent years. For such systems, acoustic scene analy-
sis can provide useful information about the environment and
supports the AS to react appropriately. However, compared
to most other application areas, analysis and enhancement of
acoustic signals captured by ASs is not only complicated by
external sources of signal degradation but also by very spe-
cific challenges like internal and self-created ego-noise. This
paper first gives an overview of a typical acoustic scenario
an AS is exposed to. Then, we consider the specific problem
of ego-noise suppression and propose to use motor data to
predict the characteristic time-varying harmonic structure of
ego-noise. This knowledge is then incorporated into a multi-
channel dictionary-based algorithm. The resulting two-stage
ego-noise reduction scheme is evaluated for ego-noise of a
humanoid robot and outperforms a comparable method that
uses no motor data but a a larger dictionary.

Index Terms— Acoustic Scene Analysis, autonomous
systems, ego-noise reduction, humanoid robot

1. INTRODUCTION

An autonomous system (AS) is typically equipped with nu-
merous sensing modalities to gather multimodal information
about its environment. This is the basis for reacting on unan-
ticipated events autonomously. A special focus is here on
the acquisition of acoustic information by means of micro-
phones which is then further processed and analysed to ex-
tract specific information from the environment. This task is
generally referred to as Acoustic Scene Analysis, c.f. Fig. 1,
and includes several subtasks such as detection and classi-
fication of acoustic events [1], source identification [2], ex-
tracting and enhancing signals of desired sources (’targets’).
After localization [3] and tracking of targets [4], the extracted
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information is used to determine instructions to control the ac-
tuators of the AS, like motors and joints for moving but also
loudspeakers for human-machine interaction. A typical sound
field captured by an M microphone array of an AS contains
different components, as depicted in Fig. 1. One or several
targets should be extracted and enhanced out of a mixture of
background noise, acoustic feedback and, very specific for
ASs, ego-noise.

Background noise comprises diffuse and coherent inter-
ferers and reduction approaches are complicated by the ab-
sence of a noise reference signal. Common approaches for
multichannel microphone apertures are beamforming [5] or
other temporal filtering approaches [6], [7].

The acoustic feedback or acoustic echo results from the
re-recorded loudspeaker signal and is addressed by Acoustic
Echo Cancellation (AEC), e.g. [8], [9]. Since the played-
back loudspeaker signal is available as reference, this can be
considered as supervised signal estimation problem. Exist-
ing approaches for autonomous systems, specifically for (hu-
manoid) robots, consider mainly a combination of beamform-
ing and AEC, e.g. [10], [11] and [12].

Noise which is created by motors, joints and mechanical
components of an AS is referred to as ego-noise. In contrast
to background noise and acoustic echoes, ego-noise is very
characteristic for an AS especially if the ASs are mobile and
move actively. Typically, an AS has various ego-noise sources
that generally have individual time, spectral and spatial char-
acteristics. In many cases, there is a primary ego-noise source
(internal ego-noise), e.g., a motor. In addition, the interaction
of an AS with the environment causes self-created noise, e.g.,
the noise of the footsteps of a humanoid robot or the tire noise
of a self-driving vehicle. In general, ego-noise exhibits two
common properties: First, since the AS is restricted to a lim-
ited number of degrees of freedom, time, spectral and spatial
properties of (internal) ego-noise should live on a manifold of
according dimensionality. Second, the instantaneous internal
state of the AS, e.g., angle information collected by proprio-
ceptors of joints or the rotation speed of propellers of a drone,
provides important extra information that can be exploited for
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Fig. 1. Schematic signal acquisition and signal processing
unit, consisting of M microphones, other sensors and one
loudspeaker and motor as exemplary actuators. Here, one tar-
get source is to be extracted from a mixture of background
noise, acoustic echo and ego-noise.

noise suppression. From this perspective, ego-noise suppres-
sion is conceptually located between acoustic feedback and
background noise suppression since a reference parameter but
not a direct reference signal is available. Dependent on the
kind of ego-noise, different reduction approaches have been
presented in literature. Stationary ego-noise, e.g, constant
rotation speed of a cooling fan or propeller noise, qualifies
(multichannel) Wiener filtering approaches for reduction, c.f.
[13] and [14]. Non-stationary, but spectrally structured ego-
noise can be tackled with non-negative matrix factorization
(NMF) methods, e.g., [15], [16] for single-channel or [17],
[18] for multichannel systems. In the context of humanoid
robots, motor data was used in [19] as input to a deep neural
network (DNN) to predict the power spectral density (PSD) of
the ego-noise. [20] associates points in the motor data space
with a ego-noise PSD templates which are then used for sub-
traction during testing.

In this paper, motor data is used to predict the intrinsic
harmonic structure of ego-noise. We propose a method to
incorporate this knowledge into a multichannel dictionary-
based ego-noise reduction approach. The resulting two-stage
suppression procedure is applied for ego-noise reduction for
a humanoid robot. The results show that even with smaller
overall dictionary size, better suppression results can be
achieved than without using motor data.

In this paper, Sec. 2 first summarizes the considered mul-
tichannel dictionary approach. Then, it is discussed how mo-
tor data can be used to predict intrinsic harmonic structure
of ego-noise patterns and how this can be incorporated to the
learning stage of the algorithm. Results are presented in Sec.

3 and demonstrate the superior performance of the proposed
method.

2. TWO-STAGE MOTOR DATA-BASED APPROACH
FOR EGO-NOISE REDUCTION

In the following, we assume ego-noise that is primarily
caused by a motor operating at varying speeds and accel-
erations. Examples for this are pivoting industrial roboter
arms and moving humanoid roboters, as considered later.
The resulting ego-noise is non-stationary but reveals typically
distinctive spectral and spatial characteristics. The basic idea
of a dictionary representation is to capture spatial and spec-
tral characteristics by a collection of prototype signals, called
atoms, collected in a dictionary. In our case, the structured
ego-noise signal should be represented by a linear combi-
nation of a few atoms at each time frame. If these atoms
are specifically designed to represent signals sharing spectral
and spatial characteristic of ego-noise only, subtracting these
atoms should remove the noise while preserving the residual
target signal.

2.1. Multichannel Dictionary learning

We use a multichannel dictionary approach [21] for ego-noise
suppression. AnM -channel signal is considered in the Short-
Time Fourier Transform (STFT) domain. Per frequency bin,
the M microphone channels are concatenated, giving a signal
vector of dimension MN , where N represents the number
of frequency bins per channel. The dictionary is given by
D = [d1, . . . ,dK ] ∈ CMN×K containing K atoms dk ∈
CMN with k = 1, . . . ,K. The assumed signal model in-
terprets each atom as contribution of a set of sound sources
that are distributed over the body of the robot. A multichan-
nel ego-noise spectrogram frame is then approximated by a
linear combination of at most S atoms, where S � K is
assumed. S is also referred to as sparsity level. Beyond this,
[21] introduces a time-varying phase matrix Φl ∈ CN×K that
allows to adjust the phase of the dictionary entries, e.g., in or-
der to compensate for time differences of arrival for the noise
components of the various sources. This phase corrected dic-
tionary is denoted by D{Φl}, where the curled brackets indi-
cate that nk-th element of Φl is multiplied with the M bins
associated with the frequency index n in atom k. The overall
optimization problem is then given by

minimize ‖yl −D{Φl}xl‖22
subject to ‖xl‖0 ≤ S,

|φn,k,l| = 1, ∀k, ∀n,

(1)

where φn,k,l is the nk-th element of Φl. Here, xl ∈ CK picks
the atoms from the dictionary. Since maximal S atoms are
chosen and S � K is assumed, xl is sparse. In this context,
‖.‖0 denotes the l0-norm that indicates the number of nonzero
elements in xl. ‖.‖2 abbreviates the l2-norm.
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Eq.(1) is minimized w.r.t. different arguments, depending
on which stage of the algorithm is considered. During the
training stage, Eq. (1) is minimized w.r.t. D, xl and Φl, us-
ing the phase-optimized K-SVD algorithm (PO-KSVD, [21])
which is based on [22]. PO-KSVD learns a dictionary D from
a set of training data {yl}l=1,...,L by alternating between a
sparse coding step and a dictionary update step. During Test-
ing, Eq.(1) is minimized w.r.t. xl and Φl while the dictionary
D is fixed. The best-matching entries of D are searched and
subtracted from a test signal yl, being, for example, a mix-
ture of ego-noise and speech. Finding the best combination
of dictionary entries is an NP-hard problem in K and S, and
is often approximated using iterative greedy methods. Here,
we use [21] that chooses orthogonal matching pursuit (OMP,
after [23], [24]) due to its high accuracy and extends it by a
phase optimizing step. The resulting algorithm is called PO-
OMP (for phase-optimized OMP).

2.2. Prediction of the harmonic structure of ego-noise

The physical state of a rotating motor can be described by
its rotation frequency fR,l at timestamp tl. However, fR,l is
not always directly observable. Then, a proprioceptor may
provide position information in terms of angle αl of a joint
that is driven by the motor. From this, we can estimate on
the rotation frequency by approximating the angular velocity
from αl at two successive timestamps

α̇l =
αl − αl−1

tl − tl−1
. (2)

and taking also the mechanical translation between motor and
joint into account, given by the velocity-reduction-ratio γ.
The rotation frequency is then given by fR,l = γ · α̇l. Both
position angle and angular velocity are referred to as motor
data in the following.

Engine noise exhibits harmonic, deterministic structure
in the spectrogram that appears mainly at multiples of half
the rotation frequency of the considered motor [25]. Hence,
the position of the i-th harmonic in an ego-noise motor noise
spectrogram can be predicted by

f
(i)
P,l =

fR,l
2
· i =

γ · α̇l
2
· i. (3)

As example, Fig. 2 (red lines) illustrates the prediction of
ego-noise harmonics for a movement of the right arm of the
NAO robot (c.f. Sec. 3) [26]. The ego-noise, which is mainly
present at the lower half of the frequency range, is clearly vis-
ible as harmonics whose shape follows the prediction from
Eq.3 up to i = 5. However, there are residual parts of the
ego-noise that cannot be estimated by the introduced model.
In the following, this is used to train two dictionaries D(harm)

an D(res), for the harmonic and the residual part of the spectro-
gram, respectively. During testing, both dictionaries are then
applied successively to suppress the ego-noise.
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Fig. 2. Spectrogram of an ego-noise recording for a right arm
movement of the humanoid robot NAO. Harmonic compo-
nents can be predicted (red) using angular velocity and Eq.3
with i = 1, . . . , 5.

2.3. Masking for signal extraction

To extract the harmonic parts of a given spectrogram yl, we
propose to construct a time-varying frequency mask wl ∈
RMN based on the predicted harmonics from Eq.(3) which
is then applied to yl to obtain ỹl = yl � wl, where � de-
notes element-wise multiplication. wl consists of elements
wln, n = 1, . . . , N , repeated M times for each n, i.e., for
all M microphones the same weighting wln is applied for a
given frequency bin. wln is computed by

wln =

max
i=1,...,I

{
exp

(
−
(
fn−f(i)

P,l

)2

σ2

)}
+ ε

1 + ε
. (4)

Hence, wln is determined by evaluating the most dominant
component of an ensemble of I Gaussians, where the i-th
Gaussian is centered around the i-th predicted harmonic, i =
1, . . . , I . Parameter ε is typically set to a small positive num-
ber, preventing that ỹ

(harm)
l is not completely set to values near

zero for wide areas where no Gaussian contributes signifi-
cantly. The variance of the Gaussian σ2 controls the width of
the mask around the harmonics and thereby how wide the sig-
nal is extracted. It is adjusted experimentally. The optimiza-
tion problem in Eq.(1) is then solved with ỹ

(harm)
l = wl � yl

to obtain the harmonic-specific dictionary D(harm). Analo-
gously, we use the inverse map w̄l = 1 − wl to obtain the
residual parts of the ego-noise and solve (1) with ỹ

(res)
l =

w̄l � yl to obtain D(res) (note that 1 is a vector of the same
dimension as wl with all elements being 1). The property of
the mask, wl + w̄l = 1, guarantees that the spectrogram can
be fully reconstructed from ỹ

(harm)
l and ỹ

(res)
l , i.e.,

ỹ
(harm)
l + ỹ

(res)
l = yl � (wl + w̄l)︸ ︷︷ ︸

1

= yl. (5)
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As a consequence, if ỹ
(harm)
l and ỹ

(res)
l can be approximated

by D(harm) and D(res), respectively, yl is also reconstructed
properly.

3. RESULTS

For the experimental evaluation of the presented approach,
we conducted experiments with a NAO H25 humanoid robot
[26]. The robot has 26 joints in total, two in the head, twelve
in the two arms, twelve in the two legs. For audio recording,
we used a modified head developed during the EU FP7 Project
EARS [27] with a microphone array of 12 sensors.

In the following, we consider a scenario in which a target
source is talking to the robot while it is waving with the right
arm. The movement includes all six joints of the right arm.
We used exclusively the motor data of the right shoulder pitch
joint to approximate angular speed and predict the harmonics
according to Eq.(2) and Eq.(3), respectively. For the record-
ings, we used four microphones, two located at the front side
of the head, one on the top and one at the back side. The sam-
pling frequency of the motor data is given by fM ≈ 200 Hz,
the audio signals are sampled with fS = 16 kHz. The audio
recordings are transformed to STFT domain using a Ham-
ming window of length 32 ms with overlap of 50 %. To as-
sociate a motor data value to each STFT frame, we computed
the arithmetic average of all motor data samples falling into
the duration of an STFT frame.

NAO performed its movements in a room with moderate
reverberation (T60 = 200 ms). For testing, 200 utterances
from the GRID corpus [28] were recorded. The loudspeaker
was positioned at 1 m distance of NAO, at a height of 1 m.
The recorded utterances were added to out-of-training move-
ment noise. These mixtures were then used to evaluate the
ego-noise suppression algorithms described above.

We recorded 30 s training data which was used to train D
on audio data alone, and to train D(harm), D(res), respectively,
jointly on audio and motor data as proposed above. The fre-
quency mask was parameterized with ε = 0.1 and σ = 2.4.
During testing, the recorded utterances were added to out-
of-training movement noise. Afterwards, ego-noise reduction
was compared using PO-OMP with D on the one hand and
D(harm), D(res) applied successively on the other hand. For
both, dictionary sizes and sparsity level were chosen such that
optimum results were obtained (c.f. caption Table 1).

The overall performance of the ego-noise suppression is
measured in terms of Signal-to-Inference-Ratio (SIR in dB)
and Signal-to-Distortion-Ratio (SDR in dB), using Matlab
functions provided by [29]. As all individual source sig-
nals are required for computing SDR and SIR, ego-noise
and speech utterances were recorded separately and added to
evaluate the proposed approaches.

While SIR measures the overall noise cancellation, SDR
also incorporates information about how much speech is dis-
torted by the suppression algorithm. Additionally, we mea-

Table 1. PO-OMP, suppression results using dictionaries D
(K = 20, S = 3), D(harm) (K(harm) = 5, S(harm) = 2), D(res)

(K(res) = 10, S(res) = 2)

SIR [dB] SDR [dB] WER [%]

D(harm), D(res) 13.72 4.72 29.9

D(harm) 11.45 3.95 37.0
D 11.68 4.03 34.6

Unprocessed -3.45 -4.02 59.9

sure speech keyword error rate (WER), using pocketsphinx
[30] in the GRID corpus [28], as defined by the CHiME chal-
lenge [31].

Table 1 shows the suppression results after successive use
of D(harm) and D(res) compared to using D trained with audio
data alone, e.g, without motor data. All approaches clearly
improve all evaluated metrics. However, the two-stage motor
data-based method outperforms the approach using only D.
Interestingly, even if evaluating the reduction with D(harm)

only, metrics are close to those of D. The splitting of the
ego-noise reduction into two successive stages allows to pa-
rameterize D(harm) and D(res) differently. Thereby, dictionary
size and sparsity level can be tuned individually on the spe-
cific properties of the ego-noise. In this example, dictionary
D(harm) requires a smaller size (K(harm) = 5) to match the har-
monic structure, while D(res) needs a size of K(res) = 10 to
approximate the residual part best. In contrast, D has a size of
K = 20, what is effectively larger thanK(harm) +K(res). This
shows that, despite a smaller overall dictionary size, the split-
ted approach outperforms a joint reconstruction of the entire
ego-noise spectrogram using only D. It is worth mentioning
that although S(harm) + S(res) > S, both approaches are com-
putationally equal efficient since the phase optimization of the
third atom requires most computational effort.

4. CONCLUSION AND OUTLOOK

Among the various tasks in acoustic scene analysis for
ASs we pointed to the special role of ego-noise relative to
other multimicrophone acquisition systems. We proposed
a method to incorporate ego-noise harmonics into a multi-
channel dictionary-based ego-noise reduction method, which
results in a better performance than exploiting no motor data.
For future work, we plan to verify the proposed method using
other learning-based ego-noise suppression approaches like
(multichannel) NMF. Beyond this, it appears promising to
extend the motor data model such that not only harmonics but
also other parts of the ego-noise can be predicted.
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