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ABSTRACT

The paper is motivated by recent advancements and developments
in large, distributed, autonomous, and self-aware systems such as
autonomous vehicles and vehicle-to-everything (V2X) technologies,
where bandwidth, security, privacy, and/or power considerations
limit the number of information transfers between neighbouring
agents. In this regard, we propose an event-triggered distributed state
estimation via diffusion strategies (ET/DPF), which is a systematic
and intuitively pleasing distributed state estimation algorithm that
jointly incorporates point and set-valued measurements within the
particle filtering framework. In the absence of a measurement form
a neighbouring node (i.e., having a set-valued measurement), each
local agent/node evaluates the probability that the unknown mea-
surement belongs to the event-triggering set based on its particles
which is then used to update the corresponding particle weights. In
our Monte Carlo simulations, the proposed ET/DPF outperforms
its counterparts in environments with limited bandwidth or/and
intermittent connectivity.

Index Terms— Autonomous and self-aware systems, Au-
tonomous Vehicles, Event-triggered estimation, Particle filtering.

1. INTRODUCTION

Autonomous and self aware agent/sensor networks (AN/SN) play
a critical role in emergence of cyber-physical systems (CPSs) [1]
where communication, control, and signal processing are integrated
with the physical world. Autonomous vehicles [2, 3] are one of the
key players in this category as they enable deployment of advanced
safety features in near future including, but not limited to, automatic
collision avoidance, automatic braking, and vehicle-to-everything
(V2X) technologies. Conventionally, the Kalman filter (KF) [4] is
used to provide sequential state estimates in such multi-agent/sensor
autonomous networks. However, the KF is a time-driven estimation
methodology and requires synchronous sensor measurements in a
periodic manner resulting in extensive communication overhead.
Consequently, it is of great practical importance and theoretical
significance to reduce the communication overhead (data transfer
rate) of agents in distributed autonomous systems, which have re-
sulted in a recent surge of interest in developing event triggered (ET)
transmission, scheduling, and estimation schemes [5–12].

The ET concept emerged by the seminal work of Astrom and
Bernhardsson [13] where it was shown that Lebesgue sampling is
superior for state estimation purposes in some dynamical systems.

This work was partially supported by the Natural Sciences and Engineer-
ing Research Council (NSERC) of Canada through the NSERC Discovery
Grant RGPIN-2016-049988.
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Fig. 1. Block diagram of the multi-agent event-triggered distributed state
estimation framework.

References [14, 15] are among the early event-based methodolo-
gies and proposed the send-on-delta (SOD) triggering mechanism
where the transmission is triggered only when the difference be-
tween the current measurement and the previously transmitted one
is greater than a pre-defined threshold (delta). In such event-based
estimation scenarios and in the absence of an observation (i.e., the
triggering conditions are not satisfied) the estimator still has access
to side information, i.e., the measurement belongs to the set charac-
terized by the triggering mechanism. Incorporation of the side infor-
mation from the event-triggering mechanism during non-event iter-
ations results in a hybrid update strategy, i.e., state estimation with
joint set-valued and point-valued measurements which is first con-
sidered in [16]. In the hybrid scenarios, due to joint incorporation
of set and point valued measurements, the posterior distribution be-
comes non-Gaussian. Some efforts have been recently considered
specially by imposing a Gaussian assumption on the posterior dis-
tribution, e.g., using single Gaussian approximation [9, 10], Gaus-
sian sum approximation [11], and non-linear filtering scenarios [12].
However, while Gaussian-based approximation of the ET posterior
has been investigated extensively, application of non-Gaussian filter-
ing using particle filters [17, 18] is still in its infancy.

The paper addresses this gap and proposes an event-triggered
distributed state estimation via diffusion strategies (ET/DPF). In the
proposed ET/DPF framework, each agent communicates its sensor
measurements only to its neighbouring nodes (no long distance or
broadcast communication) without inclusion of a fusion centre (FC),
and only in an ET fashion (Fig. 1). Diffusion strategies [19, 20] are
used to fuse the ET information in a distributed fashion as these
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strategies are robust to changes in the underlying network topology
and outperform [21] consensus approaches for distributed estima-
tion in autonomous AN/SN systems. The proposed ET/DPF is de-
veloped based on a systematic and intuitively pleasing mechanism
to jointly incorporate point and set-valued measurements within the
particle filter framework. More specifically, we capitalize on the fact
that in particle filtering framework the observations’s nature (being
point or set-valued) will mainly affect the likelihood function which
is used to update each particle’s weight. In presence of an obser-
vation (point-valued measurements), the likelihood function can ex-
actly be evaluated for each particle [22, 23]. In absence of an obser-
vation (set-valued measurement case), the proposed ET/DPF eval-
uates the probability that the unknown observation belongs to the
event-triggering set based on its particles, which is then used to up-
date the corresponding particle weights. Simulation experiments, as
proof-of-concept, confirms the effectiveness of the of the proposed
ET/DPF framework. Extensive simulations with application to navi-
gation of autonomous vehicles is the focus of our ongoing research.

The rest of the paper is organized as follows: Section 2 formu-
lates the problem. Section 3 presents the proposed ET/DPF followed
by simulation results in Section 4. Section 5 concludes the paper.

2. PROBLEM FORMULATION AND PARTICLE FILTER

We consider the following overall state-space model to represent
multi-agent estimation problem

State Model: xk=Fkxk−1 + ξk (1)

Observation Model:


z

(1)
k
...

z
(N)
k


︸ ︷︷ ︸

zk

=


h

(1)T

k xk
...

h
(N)T

k xk


︸ ︷︷ ︸

Hkxk

+


v

(1)
k
...

v
(N)
k


︸ ︷︷ ︸

vk

, (2)

with N local agents observing a set of nx state variables, z(l)
k de-

notes the local measurement made at node l, for (1 ≤ l ≤ N ), at
time instant k. Symbol T denotes transposition, and {ξ(·), v(l)(·)}
are, respectively, the global and local non-Gaussian uncertainties in
the state and observation models. Matrices Fk andHk, respectively,
represent the global state and observation dynamics.

We consider a distributed estimation architecture (Fig. 1) where
each agent shares its measurements within its local neighbourhood
and recursively updates the posterior distribution based on the col-

lective set of neighbourhood measurements z(ℵ(l))
k , {z(i)

k : i ∈
ℵ(l)}, where ℵ(l) denotes the set of agents connected to agent l. In
a fully connected system (i.e., each agent has a direct connection

to all the other agents), z(ℵ(l))
k = zk. In the autonomous and self-

aware problem considered here, however, the network is not fully
connected, besides, a local agent can not also afford to communi-
cate periodically with its neighbours. This could be due to band-
width, security, privacy, and/or power considerations. Therefore, we
consider an ET communication/fusion framework [5], where after
making each measurement the sensor decides on keeping or sharing
its measurements with its local neighbourhood. In an ET fusion ar-
chitecture, local decisions at sensor node l is governed by a binary
triggering criteria denoted by γ(l)

k which is defined as follows{
γ

(l)
k = 1 : Event occurs, Sensor l communicates.
γ

(l)
k = 0 : Idle case, no communication from Sensor l.

When the event-triggering condition is satisfied (i.e., γ(l)
k = 1),

the exact value of the sensor measurement zk is known at all its
neighbouring nodes, referred to as “point-valued observation infor-
mation”. On the other hand, when the ET condition is violated (i.e.,
γ

(l)
k = 0), some information contained in the ET sets is known to

the neighbouring nodes instead, referred to as “set-valued informa-
tion”. The main issue here comes from the non-Gaussianity of the
a posteriori distribution due to joint incorporation of point and set-
valued measurements, i.e., the posterior distribution no longer fol-
lows a Gaussian distribution. Next, we present the proposed ET/DPF
implementation which systematically uses point and set-valued ob-
servation to approximate this non-Gaussian ET posterior.

3. DIFFUSIVE EVENT-TRIGGER PARTICLE FILTER

In the proposed ET/DPF, each agent implements a localized filter to
compute an intermediate local estimate based on the ET measure-
ments limited to its immediate neighbourhood. Local agents then
cooperate distributively in an ET fashion to improve the accuracy of
their intermediate localized state estimates. Below, we explain these
steps in more details.

3.1. Local Filtering Step

In the ET/DPF, the local filter at node l computes an intermediate
state estimate of the entire state vector xk by running one localized
Gaussian particle filter [23]. In computing the localized state esti-
mates, communication is limited to the local neighbourhoods and ET
measurements. Without loss of generality and for simplicity of the
presentation, we consider the practical “Send-on-Delta” triggering
criteria/condition [14]. In order to decide whether or not to send new
measurements, sensor l computes the distance between its current
measurement and the previously transmitted measurement based on
the following ET schedule

γ
(l)
k =

{
1, if |z(l)

k − z
(l)
τk | ≥ ∆(l)

0, otherwise,
, (3)

where τ (l)
k denotes the time of last communication from sensor l,

and ∆(l) denotes its local triggering threshold. Based on the above
triggering mechanism, we define the following hybrid observation

z̃
(l)
k =

{
z

(l)
k if γ(l) = 1

{z(l)
k : z

(l)
k ∈ (z

(l)

τ
(l)
k

−∆(l), z
(l)

τ
(l)
k

+ ∆(l))} if γ(l) = 0

The collective set of ET measurements is denoted by

y
(l)
k = {z̃(i)

k : i ∈ ℵ(l)}, (4)

and over time defined as Y (l)
k = {y(l)

1 , . . . ,y
(l)
k }. The posterior

distribution P (xk|Y (l)
k ) based on collective set of hybrid observa-

tions is no longer Gaussian, eliminating the application of linear fil-
ters such as the KF. In such a non-Gaussian scenario, the optimal
Bayesian filtering recursion for iteration k is

P (xk|Y (l)
k ) =

P (yk|xk)P (xk|Y (l)
k−1)

P (yk|Y (l)
k−1)

, (5)

P (xk|Y (l)
k−1) =

∫
P (xk−1|Y (l)

k−1)f(xk|xk−1)dxk−1. (6)

In order to compute the non-Gaussian posterior distribution given
by Eq. (5) jointly based on point and set-valued measurements, each
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localized filter approximates the filtering distribution P (xk|Y (l)
k )

using a set of particles {X(l)
k
i
}npi=1 derived from a proposal distribu-

tion q(xk|Y (l)
k ), and computes their associated weights W (l)

k
i

. The
ET/DPF implements the filtering recursions by propagating the par-
ticles X(l)

k
i

and associated weights W (l)
k
i

, (1 ≤ i ≤ np), as

X(l)
k
i
∼ q(X(l)

k
i
|X(l)
k−1

i
,Y

(l)
k ) (7)

W
(l)
k
i
∝ W

(l)
k−1

i

P (y
(l)
k |X

(l)
k
i
)P (X(l)

k
i
|X(l)
k−1

i
)

q(X(l)
k
i
|X(l)
k−1

i
,Y

(l)
k )

. (8)

Consequently, the local filter at Agent l computes a particle-based
approximation of the local ET conditional posterior p(xk|Y (l)

k ) as
p(xk|Y (l)

k ) =
∑np
i=1 W

(l)
k
i
δ
(
xk − X(l)

k
i

)
. The local intermediate

state estimate denoted by ψ(l)
k at iteration (k) is defined as the ex-

pected value of the posterior distribution, i.e.,

ψ
(l)
k =E

{
xk|Y (l)

k

}
=

∫
xkp(xk|Y (l)

k )dxk ≈
np∑
i=1

W
(l)
k
i
X(l)
k
i
. (9)

Node l fuses its local intermediate state estimate ψ(l)
k with those of

its neighbouring nodes using diffusive strategies to form its updated
local state estimate, denoted by x̂(l)

k . Assume all local filters are at
steady-state at the end of iteration (k− 1), i.e., node l, has computed
x̂

(l)
k and its corresponding error covariance P (l)

k . At iteration k, the
local filtering step is then completed at each node l, (1 ≤ l ≤ N )
based on the following sub-steps:

Sub-Step L1. Observation Collection: Node l collects observations
made in its neighbourhood to form y

(l)
k , i.e., the collection of ET

measurements available in the local neighbourhood ℵ(l) of node l.

Sub-Step L2. Local State Estimation: Node l computes the local state
estimate ψ(l)

k by generating np particles from the transitional den-
sity p(xk|xk−1) and computes the mean µ̄(l)

k and covariance Σ̄
(l)
k

of its predictive particles as µ̄(l)
k = 1/np

∑np
i=1 X

(l)
k
i

and Σ̄
(l)
k =

1/np
∑np
i=1

(
µ̄

(l)
k − X(l)

k
i

)(
µ̄

(l)
k − X(l)

k
i

)T . Node l then updates the
corresponding weights of its predictive particles as follows

W̃
(l)
k
i

=
p
(
y

(l)
k |X

(l)
k
i

) p(xk|xk−1)︷ ︸︸ ︷
N [X(l)

k
i
; µ̄

(l)
k , Σ̄

(l)
k ]

π
(
X(l)
k
i
|Y (l)
k

) , (10)

and normalize them asW (l)
k
i

= W̃
(l)
k
i
/
∑np
i=1 W̃

(l)
k
i
. In Eq. (10),N [·]

denotes the Gaussian distribution with mean and covariance speci-
fied within its parenthesis. Further, agent l updates its local inter-
mediate state estimate and its corresponding covariance as ψ(l)

k =∑np
i=1 W

(l)
k
i
X(l)
k
i

andP (l)
k =

∑np
i=1W

(l)
k
i

(
ψ

(l)
k −X

(l)
k
i

)(
ψ

(l)
k −X

(l)
k
i

)
T .

Consequently, the localized filtering density at node l is approxi-
mated with a single Gaussian as p(xk|Y (l)

k ) = N
(
xk;ψ

(l)
k ,P

(l)
k

)
.

The final step to implement localized filters within the ET/DPF
framework is to evaluate the ET likelihood, p

(
y

(l)
k |X

(l)
k
i

)
. For this

purpose, we make the common assumption that measurements are
uncorrelated, i.e.,

p(y
(l)
k |xk) =

∏
j∈ℵ(l)

p(y
(j)
k |xk). (11)

Therefore, agent l computes the likelihood function for each of its
neighbouring nodes based on one of the following two approaches.

(i) Update based on Set-valued Measurements (γ(j)
k = 0): In the

absence of the sensor measurement from agent j ∈ ℵ(l), and based
on the triggering mechanism defined in Eq. (3), the estimator at node
l has the following side information

z
(j)
k ∈ (z(j)

τk −∆(j), z(j)
τk + ∆(j)), (12)

where z(j)
τk is the previously communicated observation from node j.

In this case, the likelihood function can be specified as follows

P
(
y

(j)
k |xk, γ

(j)
k = 0

)
= P

(
z(j)
τk −∆(j) ≤ z(j)

k ≤ z
(j)
τk + ∆(j)),

(13)
which by substituting from Eq. (2), we have

P
(
y

(j)
k |xk, γ

(j)
k = 0

)
(14)

= P
(
z(j)
τk −∆(j) ≤ h(j)T

k xk + v
(j)
k ≤ z

(j)
τk + ∆(j))

= P
([
z(j)
τk −∆(j)−h(j)T

k xk
]
≤v(j)

k ≤
[
z(j)
τk + ∆(j)−h(j)T

k xk
])
.

Note that in the third line of Eq. (14), we kept the noise in the middle
and moved other terms to the sides in order to be able to compute the
likelihood function based on the probability distribution of the noise.
As the observation noise v(j)

k has a zero-mean Gaussian distribution
with variance R(j)

k , the likelihood function reduces to

P (y
(j)
k |xk, γ

(j)
k = 0) (15)

=
1√

2πR
(j)
k

∫ z
(j)
τ +∆(j)−h

(j)T

k
xk

z
(j)
τ −∆(j)−h

(j)T

k
xk

exp

{
−t2

2R
(j)
k

}
dt

= Φ

z(j)
τ + ∆(j) − h(j)T

k xk√
R

(j)
k

−Φ

z(j)
τ −∆(j) − h(j)T

k xk√
R

(j)
k


︸ ︷︷ ︸

h(j)T (xk)

,

where Φ(·) is the cumulative Gaussian distribution function with
zero mean and variance 1. This completes the computation of the
likelihood function in idle scenarios (no transmission).

(ii) Update based on Point Measurements (γ(j)
k = 1): In this case,

the estimator receives the sensor measurement z(j)
k , therefore, the

hybrid likelihood function P (y
(j)
k |xk) reduces to the sensor likeli-

hood function P (z
(j)
k |xk) [24]. Consequently, the hybrid likelihood

function is given by

P (y
(j)
k |xk, γ

(j)
k = 1) =

1√
2πR

(j)
k

exp

{
−(z

(j)
k − h

(j)T

k xk)2

2R
(j)
k

}
(16)

This complete the presentation of the localized filters of the ET/DPF.
Next, we present our diffusive fusion where each node updates its
local state estimates by collaborating with its neighbouring nodes.

3.2. Diffusion Step

The second step is based on local collaboration, where node l, (1 ≤
l ≤ N ), fuses its local intermediate estimate ψ(l)

k with that of its
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Fig. 2. (a) Sensor placements. (b) Agent networks and connections. (c) Position MSE comparison over different values of ∆(l).

neighbouring nodes as follows

x̂
(l)
k =

∑
j∈ℵ(l)

γ
(j)
k × α

(j,l)
k︸ ︷︷ ︸

β
(j,l)
k

×ψ(j)
k , (17)

such that if we collect the nonnegative weights β(j,i)
k into a N ×N

matrix Ak, the weights β(j,l)
k satisfy the following properties: (i)

β
(j,l)
k ≥ 0; (ii) AT

k 1 = 1, and; (iii) β(j,l)
k = 0 if j /∈ ℵ(l) or

γ
(j)
k = 0. Term 1 is a vector of size N with all entries equal to

one. These conditions imply that the weights on the links arriving at
a single node add up to one, which is equivalent to saying that the
matrix is left-stochastic. Moreover, if two nodes are not connected
or an event is not triggered, then their corresponding entry is zero.
The ET diffusive matrix Ak can be designed using covariance in-
tersection [25] or updated adaptively as explained in [26]. A simple
approach for choosing the ET diffusion matrix is to assign a weigh to
each node according to the cardinality of its neighbourhood by con-
sidering the triggering variables. Through diffusive fusion, the filter
implemented at node l, (1 ≤ l ≤ N ), forms a Gaussian approxima-
tion of the posterior distribution as

p(xk|zk) = N
(
xk; x̂

(l)
k ,P

(l)
k

)
. (18)

Note that, P (l)
k in Eq. (18) is not a representative of the covariance

of the diffusive state estimate x̂(l)
k as the diffusion update is not per-

formed on the covariance matrices.

4. SIMULATIONS

In this section, simulation experiments are developed, as proof-of-
concept, to evaluate the performance of the proposed ET/DPF. Ex-
tensive simulations with application to navigation of autonomous ve-
hicles is the focus of our ongoing research. Following the recent
literature on ET estimation [7], a tracking problem is considered
where observations from an agent network of N = 20 nodes is used
to sequentially estimate the state of the target denoted by xk con-
sisting of its position and speed. Sensors are distributed randomly
in a square region and each sensor communicates with its neigh-
bours within a connectivity radius of

√
2 log(N)/N units. Target’s

dynamic is given by xk =

[
0.8 1
0 0.95

]
xk−1 + wk, where

wk ∼ N
(

0,Q =

[
0.1 0
0 0.1

])
. Each sensor periodically mea-

sures the position and speed of the target based on the following ob-
servation model z(l)

k =
[

0.7 0.6
]
xk + v

(l)
k . In this experiment,

the observation noise variance is σ2
v(l)

= 0.01. The following results
are computed over Monte-Carlo (MC) simulations of 100 runs. The
object’s position and speed used in each simulation run changes ran-
domly to provide a fair experimental benchmark. Furthermore, the
following three estimators are implemented and compared for accu-
racy: (i) The full-rate diffusion-based KF where each sensor commu-
nicates its measurements to its neighbouring nodes every iteration;
(ii) Event-based diffusive KF, where SOD triggering is used, and;
(iii) The proposed ET/DPF algorithm, where the triggering decisions
at the sensor level are made based on SOD mechanism and the fu-
sion is performed distributively using diffusive strategies by jointly
incorporating set-valued and point-valued measurements.

A realization of the sensor placement is shown in Fig. 2(a).
Fig. 2(b) illustrates the estimated position mean-square errors (MSE)
obtained from different implemented filters without inclusion of the
KF-based curve for better clarity. In this experiment, the value of
∆(l), for (1 ≤ l ≤ N = 20), varies up to 6.8, which in turn results in
varying values of the communication rate (we considered the same
value for all the agents). It is observed that the proposed ET/DPF
closely follows the ground truth (i.e., the difference is within 0.05 in
position MSE sense). Besides, it is also observed that the proposed
ET/DPF algorithm provides acceptable results in very low commu-
nication rates (high values of ∆(l)) and closely follows its full-rate
counterparts in high communication rates. Finally, when the com-
munication rate increases (i.e., small values for ∆(l)), the proposed
event-based methodology approaches its full-rate counterpart.

5. CONCLUSION

In this paper, we proposed an event-triggered particle filter (ET/DPF)
framework for distributed state estimation in autonomous agent-
sensor systems. Each sensor uses practical send-on-delta (SOD)
event triggering mechanism resulting in availability of side infor-
mation at its neighbouring nodes in the absence of an observation.
Utilization of this side information results in estimation with joint
set-valued and point-valued measurements which consequently
translates in to a non-Gaussian state estimation problem. The pro-
posed ET/DPF is a systematic and intuitively pleasing non-Gaussian
estimation framework within the particle filter framework and uses
diffusion strategies for distributed implementations. The simulation
results depicts that the proposed ET/DPF outperforms its counter-
parts specifically in low communication rates.
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