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ABSTRACT

This paper addresses audio-visual signal processing for conversation
analysis, which involves multi-modal behavior detection and mental-
state recognition. We have investigated prediction of turn-taking by
the audience in a poster session from their multi-modal behaviors,
and found out that the eye-gaze provides an important cue compared
with head nodding and verbal backchannels. This finding has been
applied to audio-visual speaker diarization by combining eye-gaze
information. We are now investigating engagement recognition in
human-robot interaction based on the same scheme. Robust and real-
time detection of laughing, backchannels and nodding is realized
based on LSTM-CTC. We introduce a latent “character” model to
cope with the subjectivity and variations of engagement annotations.
Experimental evaluations demonstrate that (1) the latent character
model is effective, (2) automatic behavior detection is robust and
does not degrade the engagement recognition accuracy, and (3) the
eye-gaze is the most important feature among others.

Index Terms— Audio-visual signal processing, conversation
analysis, behavior analysis, engagement, human-robot interaction

1. INTRODUCTION

In human-human interaction, we exhibit our mental states and
attitudes via several behaviors even without speaking. The behav-
iors while listening include eye-gaze, head nodding, and verbal
backchannels. These suggest attentiveness, engagement and inter-
est. Occasionally, strong reactions such as laughing and assessment
tokens (e.g. “wow”) are observed [1]. Detection of these multi-
modal behaviors and recognition of mental states are an important
skill in human communication, and thus required for artificial in-
telligence. For example, an agent in a digital signage should detect
the audience’s attention, and should stop talking when the audience
does not attend any more (even if they are present) [2]. Or it should
take questions if the audience is interested and has something to say.
This skill of conversational analysis or “mood sensing” is critical
for a humanoid robot with a human-like appearance and interaction
functionality.

We conducted the “smart posterboard” project, which consists
of multi-modal sensing and analysis of conversations in poster ses-
sions [3, 4, 5]. Poster sessions are a norm in many conferences and
open-lab events because they allow for flexible and interactive pre-
sentations. The audience can show feedback to the presentation in
real time, and the presenters are expected to take questions even dur-
ing the presentation and, if necessary, switch the content and expla-
nation according to them. Thus, we set up an interesting problem
whether we can predict the audience’s turn-taking based on the be-
haviors during the attendance [5]. We also empirically know that
the audience’s questions and comments suggest their interest in the

Fig. 1. Scheme of audio-visual conversation analysis

presentation. Thus, the conversational analysis of a recorded ses-
sion in an offline mode is useful for estimating the interest level of
the audience in the poster session [6]. We also investigated audio-
visual speaker diarization that detects when the audience makes ut-
terances by combining the eye-gaze information with the audio in-
formation [7]. In this paper, we highlight the importance of the eye-
gaze behaviors among others.

Currently, we are conducting a project on symbiotic human-
robot interaction with a goal of an autonomous android robot who
behaves and interacts just like a human [8, 9, 10]. When we con-
sider a social role of the robot such as a receptionist and a lab guide,
who plays a role of poster presenter, the first step is to sense the
human attitude toward the interaction, particularly the engagement
level. Therefore, we investigate engagement recognition based on
the audio-visual processing of the user’s behaviors.

Fig. 1 depicts the scheme of audio-visual conversation analysis,
which has been applied to two domains addressed in this paper. In
the domain of smart posterboard, we tried to predict turn-taking or
detect speaking activity of the audience, which are objectively ob-
served and can be regarded as an approximation of their engagement
in the poster session. In the domain of human-robot interaction, we
investigate engagement recognition. As the annotation of engage-
ment is subjective, we introduce a latent “character” model to cope
with a variety of annotators. We have designed dedicated audio-
visual sensing systems and implemented signal processing modules
to detect multi-modal behaviors. LSTM-CTC has realized robust
detection of behaviors based on the event-wise optimization in train-
ing. We will also investigate which behaviors have impact on these
prediction and recognition tasks.

2. CONVERSATION SCENE ANALYSIS OF POSTER
SESSIONS BY SMART POSTERBOARD

We have designed and implemented a smart posterboard, which can
record poster sessions and sense human behaviors. The posterboard,
which is actually a 65-inch LCD screen, is equipped with a 19-
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Fig. 2. Outlook of smart posterboard

channel microphone array on the top and attached with Kinect sen-
sors. An outlook of the smart posterboard is shown in Fig. 2. A more
lightweight and portable system is realized by only using Kinect sen-
sors. A set of high-resolution cameras were also used for corpus
recording.

We have recorded a number of poster sessions using this device.
In each session, one presenter prepared a poster on his/her own aca-
demic research, and there was an audience of two persons, standing
in front of the poster and listening to the presentation. The duration
of each session was 20-30 minutes.

2.1. Prediction of Turn-taking by Audience in Poster Sessions

Turn-taking in conversations is a natural behavior by humans, but it
is still challenging for spoken dialogue systems and conversational
robots. Recently, a number of studies have been conducted to model
and implement natural turn-taking functions [11, 12, 13, 14, 15], but
a majority of them are still focused on dyadic conversations between
two persons or between a user and a system. There are a few studies
that deal with meetings and conversations by more than two per-
sons [16, 17].

Conversations in poster sessions are different from those set-
tings, in that presenters hold most of turns and thus the amount of
utterances is very unbalanced. However, the segments of the audi-
ence’s questions and comments are more informative and should not
be missed. We also presume that the audience signals the willing-
ness to take a turn via multi-modal behaviors. Therefore, we set up
a problem to predict turn-taking by the audience using multi-modal
behaviors.

The prediction is done at every end-point of the presenter’s ut-
terance (IPU) using the information prior to the next utterance of the
current speaker (=turn-holding) or speaker change (=turn-yielding).
Since there are multiple persons in the audience, turn-taking or turn-
yielding is counted by either person of the audience.

Prosodic features of the presenter’s utterance were adopted as a
baseline based on the previous work [17]. Specifically, F0 (mean,
max, min and range) and power (mean and max) of the presenter’s
utterance was computed prior to the prediction point. Each feature
was normalized by the speaker by taking the z-score.

In this study, we particularly focus on the effect of multi-
modal behaviors of the audience. We have incorporated nodding
and backchannels as well as eye-gaze behaviors. We simply counted
head nodding from visual information and verbal backchannels from
audio information. Eye-gaze features were defined by the eye-gaze
object (poster or audience or presenter) and the joint eye-gaze event,

Table 1. Prediction result of turn-taking by audience in poster ses-
sions

feature recall precision F-measure

prosody 0.667 0.178 0.280
backchannel (BC) 0.459 0.113 0.179
eye-gaze (gaze) 0.461 0.216 0.290

prosody+BC 0.668 0.165 0.263
prosody + gaze 0.706 0.209 0.319

prosody+BC+gaze 0.678 0.189 0.294

which was a combination of the eye-gaze object of the presenter and
that of the audience, and the duration of these [5].

Prediction experiments were conducted by using four sessions
in a cross-validation manner. In this experiment, the ground-truth
annotations of backchannels and eye-gaze information were used.
The results with SVM classifiers are listed in Table 1. Here, recall,
precision and F-measure were computed for turn-taking by the audi-
ence. This case accounts for only 11.9% and its prediction is a very
challenging task, while we can easily get an accuracy of over 90%
for prediction of turn-holding by the presenter. We are particularly
concerned on the recall of turn-taking, considering the nature of the
task and application scenarios.

As shown in Table 1, the baseline prosodic features obtained a
higher recall while the eye-gaze features achieved a higher preci-
sion and F-measure. Combination of the eye-gaze features with the
prosodic features was effective for improving both recall and preci-
sion. On the other hand, the backchannel feature got the lowest per-
formance, and its combination with other features resulted in degra-
dation of the performance. This result demonstrated that the eye-
gaze behavior provides a strong cue in turn-taking while backchan-
nels do not necessarily show strong engagement.

2.2. Audio-Visual Speaker Diarization in Poster Sessions

Since the eye-gaze information provides a cue for turn-taking as
shown in the previous subsection, it is expected to be useful for de-
tecting speaking activity. Therefore, we implemented a multi-modal
speaker diarization by incorporating eye-gaze information. Speaker
diarization is a process to identify “who spoke when” in multi-party
conversations, and it has been investigated based on audio informa-
tion. In real multi-party conversations, the diarization performance
is degraded by adversary acoustic conditions such as background
noise and distant talking.

An acoustic baseline method was based on sound source local-
ization using DOAs (Direction Of Arrivals) derived from the mi-
crophone array. To estimate a DOA, we adopted the MUltiple SIg-
nal Classification (MUSIC) method [18], which can detect multiple
DOAs simultaneously. The MUSIC spectrum mt(θ) was calculated
based on the orthogonal property between an input audio signal and
a noise subspace. Here θ is an angle between the microphone array
and the target of estimation, and t represents a time frame. The MU-
SIC spectrum represents DOA likelihoods, and the large spectrum
suggests a sound source in that angle. We can also use the partic-
ipant’s head location tracked by the Kinect sensors. The possible
location of the i-th participant is constrained within a certain range
(±θB) from the detected location θi,t. Thus, we define the acoustic
feature ai,t of the i-th participant at time frame t with the MUSIC
spectrum in the range:

ai,t = [mt(θi,t − θB), · · · , mt(θi,t), · · · , mt(θi,t + θB)]T (1)
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Table 2. Evaluation of audio-visual speaker diarization (DER [%])

method SNR [dB]
∞ 20 15 10 5 0 average

acoustic-only model eq. (3) w/o gi,t 6.52 7.60 9.63 14.20 22.33 34.34 15.77
feature-level combination eq. (2) 6.95 7.91 9.85 15.12 26.43 43.66 18.32
likelihood-level combination eq. (3) 7.35 8.55 10.73 14.23 18.21 21.22 13.38

Then, we incorporate eye-gaze information extracted from vi-
sual information. The eye-gaze feature gi,t for the i-th participant
at time frame t is essentially same as those used in the previous sub-
section, except that the features are computed for every time frame
using the preceding frames. The acoustic feature ai,t and the eye-
gaze feature gi,t are integrated to detect the i-th participant’s speech
activity vi,t at time frame t. Note that the speech activity vi,t is
binary: speaking (vi,t = 1) or not-speaking (vi,t = 0).

In this study, we make a comparison of two integration meth-
ods: feature-level combination and likelihood-level combination.
The feature-level combination trains a single classifier which takes
a combined input of the acoustic feature and the eye-gaze feature.

fi,t(ai,t,gi,t) = p(vi,t = 1|ai,t,gi,t) (2)

The likelihood-level combination conducts a linear interpolation of
the likelihoods independently computed by the two feature sets.

fi,t(ai,t,gi,t) = α·p(vi,t = 1|ai,t)+(1−α)·p(vi,t = 1|gi,t) (3)

Here α ∈ [0, 1] is a weight coefficient. Each likelihood is computed
by a logistic regression model to take a value ∈ [0, 1]. Compared
with the feature-level combination, the likelihood-level combination
has a merit that training data does not have to be aligned between
the acoustic and eye-gaze features. Furthermore, the weight coef-
ficient α can be appropriately determined according to the acous-
tic environments such as Signal-to-Noise Ratio (SNR). Here, it is
estimated using an entropy h of the acoustic posterior probability
p(vi,t|ai,t) [19].

In this experiment, eight poster sessions were used in a cross-
validation manner. Eye-gaze information was automatically cap-
tured by Kinect sensors. Logistic regression models were trained
respectively for the presenter and the audience. To evaluate perfor-
mance under ambient noise, audio data was prepared by superim-
posing a diffusive noise recorded in a crowded place. SNR was set
to 20, 15, 10, 5 and 0 dB. In real poster conversations carried out in
academic conventions, SNR is expected to be around 0 to 5 dB.

Table 2 lists Diarization Error Rate (DER) for each SNR. Com-
pared with the acoustic-only model, the audio-visual likelihood-level
combination achieved higher performance under noisy environments
(SNR = 5, 0 dB). Thus, we confirm the effect of eye-gaze informa-
tion under noisy environments expected in real poster sessions. On
the other hand, the feature-level combination did not work well be-
cause the weight of the two features were fixed during the training
and cannot be adjusted according to SNR.

For reference, we tuned the weight coefficient α in Eq. (3) man-
ually with the stepping size of 0.1. In the relatively clean environ-
ment (SNR = 20 dB), the optimal weight was 0.9, but it was 0.6 in
the noisy environments (SNR = 5 and 0 dB). These results suggest
that the weight of eye-gaze features must be and could be increased
appropriately in noisy environments. The average DER by the man-
ual tuning is 12.13%, which is only slightly better than the result
(13.38%) by the automatic weight estimation. Therefore, the auto-
matic weight estimation works reasonably according to the acoustic
environment.

3. ENGAGEMENT RECOGNITION IN HUMAN-ROBOT
INTERACTION

In the previous section, we investigated prediction of turn-taking
by the audience in poster sessions. Since turn-taking suggests en-
gagement in the session, this scheme can be naturally applied to de-
tection of the engagement level. Recognition of user engagement
is particularly required for agents and robots interacting with hu-
mans [2, 16, 20]. The agent or robot can keep talking the current
topic if the user is engaged in the conversation, but otherwise should
stop talking or change the topic. In this study, we investigate engage-
ment recognition in human-robot interaction based on multi-modal
behaviors, as depicted in Fig. 1.

We are developing an autonomous android ERICA who looks,
behaves and interacts just like a human. She is designed to play a
social role such as a receptionist and a lab guide with natural spo-
ken dialogue as well as non-verbal behaviors such as gazing and
nodding. With this human-like android, we expect users to exhibit
behaviors just as in human-human interactions, in which a variety of
multi-modal behaviors signal engagement.

We have collected a number of conversation sessions with ER-
ICA in a Wizard-of-Oz (WOZ) setting. The dialogue was recorded
with directed microphones, a 16-channel microphone array, RGB
cameras, and Kinect v2 sensors. An outlook of a session and the
recording environment are shown in Fig. 3.

We had five annotators to label the engagement level of the user
for each conversation session (12 annotators and 20 sessions in to-
tal). Here, we focus on the listening mode of the users and multi-
modal behaviors, so instructed the annotators to label for each turn
of the robot if the user’s engagement level is regarded as high based
on some behavior cues. Behaviors that suggest high engagement
include facial expressions, verbal backchannels, head nodding, eye-
gaze, laughing and body movements. However, mapping from these
behaviors to the engagement level, or how to interpret them, may be
subjective and different for each annotator. Instead of simply tak-
ing a mean or a majority of the labels given by multiple annotations,
we introduce a Bayesian model, in which the engagement labels are
generated via a latent character of the annotator.

In this model, given a behavior pattern bk, the engagement level
e is labeled by an annotator ai via a latent character variable cj ,
where e is binary (high (e=1) or not (e=0)) and cj is discrete.

p(e|bk, ai) =
JX

j

p(e|cj , bk)p(cj |ai) (4)

The behavior patterns bk are defined by observed combinations of
individual behaviors (i.e. laughing, backchannels, nodding and eye-
gaze) to consider their co-occurrence effects. Then, the two kinds
of probabilities are estimated via collapsed Gibbs sampling, which
samples each character alternatively and iteratively from the condi-
tional probability distributions. We also tried different sizes of the
latent characters cj , and found J=4 provides the best performance.
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Fig. 3. Dialogue with an android ERICA in WOZ setting

This model deals with variations of annotators with robust estima-
tion, and provides engagement-level prediction per a given annota-
tor. In human-robot interaction, we designate a character of ERICA.

We also implement automatic detection of laughing, backchan-
nels, nodding and eye-gaze, though detection of the facial expres-
sions is yet to be done. Detection of laughing and backchannels
is performed with bidirectional-LSTM and the CTC (Connectionist
Temporal Classification) criterion using the audio information [21].
The CTC allows for event-wise optimization in the training of the
detection model without precise frame-wise labels and will inte-
grate it with automatic speech recognition in a unified framework.
In this experiment, we used audio recorded with a directed micro-
phone, and computed standard log-Mel filterbank features (10msec
shift). Then, LSTM of five hidden layers with 256 nodes per each
layer was trained with the CTC criterion using 71 dialogue sessions,
which contains 3931 backchannels and 1003 laughing samples. An
evaluation on the 20 test sessions shows that precision and recall
of backchannels were 0.780 and 0.865, and those of laughing were
0.772 and 0.496.

Detection of nodding and eye-gaze is done using the visual in-
formation, in particular, the head position and pose captured by the
Kinect v2 sensor. For nodding detection, we use a feature set of in-
stantaneous speed of the yaw, roll, and pitch of the head together
with the average speed, velocity, acceleration and the range of the
head pitch over the previous 500msec. It is fed to another LSTM of
a single hidden layer with 16 nodes, which outputs a posterior prob-
ability of nodding at every 10msec frame. In a cross-validation using
the 20 sessions, which contains 855 nodding events, the recall and
precision were 0.608 and 0.763, respectively. The eye-gaze behavior
is modeled by a logistic regression model to take a value of 1 when
the user is gazing the robot longer than a threshold. Eye-gaze toward
the robot is detected when the distance between the head-orientation
vector and the location of the robot’s head is smaller than a threshold.
This detection is conducted every 10msec.

As these models are designed to generate a probability p(bk|x)
of detecting a behavior bk given an audio-visual observation x,
where x is the feature set mentioned above, the engagement level
recognition is formulated as below:

p(e|x, ai) =

JX

j

KX

k

p(e|cj , bk)p(cj |ai)p(bk|x) (5)

In this implementation, combination of the multi-modal behaviors is
done in the definition of the behavior patterns bk and their summa-
tion in the above formula.

The overall system is realized according to the scheme depicted
in Fig. 1, which consists of the two steps of behavior detection and
engagement recognition. While the behavior detection modules are
trained based on objective annotations, the engagement recognition
model takes into account subjective annotations.

Table 3. Engagement recognition accuracy (%) in human-robot in-
teraction

manual automatic
behaviors annotation detection

all (J=1) 0.674 0.663
all (J=4) 0.711 0.700

w/o backchannel 0.699 0.684
w/o laughing 0.684 0.689
w/o nodding 0.700 0.699
w/o eye-gaze 0.681 0.669

Engagement recognition experiments were conducted using the
20 sessions in a cross-validation manner. Table 3 lists the results
in terms of recognition accuracy when the behaviors are manually
given (Eq. 4) and when they are automatically detected from audio-
visual information (Eq. 5). The table first shows the effect of the la-
tent character model. With the character size of 4 (J=4), the recogni-
tion accuracy is much improved from the model without considering
the latent characters (J=1), which is comparable to a simple logistic
regression model. There is only a little degradation with automatic
detection, and the result demonstrates the applicability in real-world
setting. The table also lists the performance by removing each be-
havior one by one. The results show that the eye-gaze behavior is
the most critical. Laughing also makes some contribution [22], but
backchannels and nodding do not have a significant impact to overall
recognition. It is suggested that backchannels and nodding express
some reaction, but not engagement. The results are in accordance
with the findings in the posterboard domain addressed in the previ-
ous section.

All behavior detection modules are implemented to allow for
real-time engagement recognition. This enables the robot to adap-
tively switch the action according to the user’s engagement level.

4. CONCLUDING REMARKS

We have investigated audio-visual signal processing for conversa-
tion analysis, which consists of multi-modal behavior detection and
mental-state recognition, in two application domains. One is the
smart posterboard, which senses the audience’s behaviors in poster
sessions for intelligent media archiving. It is shown that the eye-gaze
provides effective features for turn-taking prediction and speaker di-
arization in noisy conditions. This finding can be extended to an
intelligent interaction system to conduct poster presentations.

Therefore, we are working on the other application of a hu-
manoid robot who behaves and interacts just like a human. Recogni-
tion of user engagement is modeled and implemented via detection
of multi-modal behaviors such as backchannels, nodding, laughing
and eye-gaze. The experimental evaluations demonstrate that the
contribution of the eye-gaze is the most significant. We also demon-
strate the feasibility of real-time engagement recognition based on
audio-visual signal processing with reasonable performance.

The results in the two domains confirm that the proper eye con-
tact is important in conversations, especially for expressing positive
feedback, and thus must be realized by humanoid robots in both
recognition and generation.
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