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ABSTRACT

While convolutional sparse representations enjoy a number of use-
ful properties, they have received limited attention for image recon-
struction problems. The present paper compares the performance of
block-based and convolutional sparse representations in the removal
of Gaussian white noise. The usual formulation of the convolutional
sparse coding problem is slightly inferior to the block-based repre-
sentations in this problem, but the performance of the convolutional
form can be boosted beyond that of the block-based form by the in-
clusion of suitable penalties on the gradients of the coefficient maps.

Index Terms— Convolutional Sparse Representations, Convo-
lutional Sparse Coding, Total Variation

1. INTRODUCTION

Sparse representations are well-established as a tool for inverse
problems in a wide variety of areas, including signal and image pro-
cessing, computer vision, and machine learning [1]. The standard
form is a linear representation Dx ≈ s, where D is the dictionary,
x is the representation, and s is the signal to be represented. When
D is a linear transform with a fast transform operator, such as the
Discrete Wavelet Transform, these representations can be computed
for large images, but when D is learned from training data and
represented as an explicit matrix, this is not feasible, the standard
approach being to independently compute the representations over
a set of overlapping image patches. Convolutional sparse repre-
sentations are a recent1 alternative that replace the general linear
representation with a sum of convolutions2 ∑

m dm ∗ xm ≈ s,
where the elements of the dictionary dm are linear filters, and the
representation consists of the set of coefficient maps xm.

There is growing interest in imaging and image processing ap-
plications of the convolutional form [4, 5, 6, 7, 8, 9]. Surprisingly,
denoising of Gaussian white noise, arguably the simplest of all imag-
ing inverse problems, has received almost no attention beyond a very
brief example providing insufficient detail for reproducibilty [10,
Sec. 4.4]. The present paper argues that, despite its numerous advan-
tages in many contexts, the convolutional form is not competitive for
the Gaussian white noise denoising problem, but that these deficien-
cies can be mitigated by moving beyond simple `1 regularization, the
specific form being investigated here consisting of additional penal-
ties on the gradients of the coefficient map3.

This research was supported by the U.S. Department of Energy via the
LANL/LDRD Program.

1More accurately, the label convolutional is recent, but the equivalent
translation invariant sparse representations are much older [2, Sec. II].

2Typically circular convolutions [3].
3A weighting strategy applied to the `1 penalty has also been found to im-

It is emphasised that these extensions have relevance beyond
the specific denoising test problem considered here, in that the im-
proved performance reported on this problem can also be expected to
have an impact on more general image reconstruction problems, e.g.
when convolutional sparse coding is employed as the prior within the
plug-and-play priors framework [12, 13]. There is also evidence that
the inclusion of such gradient penalties enhances the performance
of convolutional sparse representations in certain image decomposi-
tion/restoration problems [7, 9].

2. CONVOLUTIONAL SPARSE CODING

The most widely used form of convolutional sparse coding is Con-
volutional Basis Pursuit DeNoising (CBPDN), defined as

arg min
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2

+ λ
∑
m

αm ‖xm‖1 , (1)

where the αm allow distinct weighting of the `1 term for each
filter dm. At present, the most efficient approach to solving this
problem [2] is via the Alternating Direction Method of Multipliers
(ADMM) [14] framework. An outline of this method is presented
here as a basis for extensions proposed in following sections.

Problem (1) can be written as

arg min
x

(1/2)
∥∥Dx− s

∥∥2
2

+ λ ‖α� x‖1 , (2)

where� is the Hadamard product,Dm is a linear operator such that
Dmxm = dm∗xm, and D, α, and x are the block matrices/vectors

D =
(
D0 D1 . . .

)
α =

 α01
α11

...

 1 =

 1
1
...

 x =

 x0

x1

...

 . (3)

This problem can be expressed in ADMM standard form as

arg min
x,y

(1/2)
∥∥Dx− s

∥∥2
2
+λ ‖α� y‖1 s.t. x−y=0 , (4)

which can be solved via the ADMM iterations

x(j+1) = arg min
x

1

2

∥∥Dx− s
∥∥2
2

+
ρ

2

∥∥∥x− y(j) + u(j)
∥∥∥2
2

(5)

y(j+1) = arg min
y

λ ‖α� y‖1 +
ρ

2

∥∥∥x(j+1) − y + u(j)
∥∥∥2
2

(6)

u(j+1) = u(j) + x(j+1) − y(j+1) . (7)

The solution to (6) is given by the soft thresholding opera-
tion [15, Sec. 6.5.2] y = sign(z) � max(0, |z| − λα/ρ) where
z = x + u. The only computationally expensive step is (5), which
can be solved via the equivalent DFT domain problem

prove the denoising performance of convolutional sparse representations [11,
Sec. 8], but that approach is not considered here due to space constraints.
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arg min
x̂

(1/2)
∥∥D̂x̂− ŝ

∥∥2
2

+ (ρ/2) ‖x̂− (ŷ − û)‖22 , (8)

where ẑ denotes the DFT of variable z. The solution for (8) is given
by the MN ×MN linear system (for M filters and an image s with
N pixels)

(D̂HD̂ + ρI)x̂ = D̂H ŝ + ρ (ŷ − û) . (9)

The key to solving this very large linear system is the observation
that it can be decomposed into N independent M ×M linear sys-
tems [16], each of which has a system matrix consisting of the sum
of rank-one and diagonal terms so they they can be solved very effi-
ciently by exploiting the Sherman-Morrison formula [17].

3. GRADIENT REGULARIZATION

An extension of (1) to include an `2 penalty on the gradients of the
coefficient maps was proposed in [6]. The primary purpose of this
extension was as a regularization for an impulse filter intended to
represent the low-frequency components of the image, but a small
non-zero regularization on the other dictionary filters was found to
provide a small improvement to the impulse noise denoising perfor-
mance [6]. Considering the edge-smoothing effect of `2 gradient
regularization, a reasonable alternative to consider is Total Variation
(TV) regularization. We consider three different variants:

1. scalar TV [18] applied independently to each coefficient map,
2. vector TV [19] applied jointly to the set of coefficient maps,
3. scalar TV [18] applied to the reconstructed image compo-

nents Dmxm rather than to the coefficient maps xm.

3.1. Scalar TV on Coefficient Map

The CBPDN problem extended by adding a scalar TV term on each
coefficient map can be written as

arg min
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2

+ λ
∑
m

αm ‖xm‖1 +

µ
∑
m

βm

∥∥∥√(g0 ∗ xm)2 + (g1 ∗ xm)2
∥∥∥
1
, (10)

where g0 and g1 are filters that compute the gradients along im-
age rows and columns respectively. The TV term can be written as
µ
∑

m βm

∥∥∥√(G0xm)2 + (G1xm)2
∥∥∥
1

where linear operators G0

and G1 are defined such that Glxm = gl ∗ xm, and defining4

Γl =

 β0Gl 0 . . .
0 β1Gl . . .
...

...
. . .

 (11)

allows further reduction to µ
∥∥∥√(Γ0x)2 + (Γ1x)2

∥∥∥
1
.

Problem (10) can be written in standard ADMM form as

arg min
x,y0,y1,y2

1

2

∥∥Dx− s
∥∥2
2

+ λ ‖α� y2‖1 + µ
∥∥∥√y2

0 + y2
1

∥∥∥
1

s.t.

 Γ0x
Γ1x
x

−
 y0

y1

y2

 = 0 . (12)

The resulting x subproblem has the form

4Note that the Γl notation is overloaded, taking on a different definition
in each section.

arg min
x

1

2
‖Dx− s‖22 +

ρ

2
‖Γ0x− y0 + u0‖22 +

ρ

2
‖Γ1x− y1 + u1‖22 +

ρ

2
‖x− y2 + u2‖22 , (13)

and the solution of the equivalent DFT domain problem is given by

(D̂HD̂+ρI + ρΓ̂H
0 Γ̂0 + ρΓ̂H

1 Γ̂1)x̂ = D̂H ŝ + ρ
(
ŷ2 − û2 +

Γ̂H
0 (ŷ0 − û0) + Γ̂H

1 (ŷ1 − û1)
)
. (14)

Since Γ̂H
0 Γ̂0 and Γ̂H

1 Γ̂1 are diagonal (the Ĝl are diagonal, and there-
fore so are Γ̂l), they can be grouped together with the ρI term; the
independent linear systems described in Sec. 2 are again composed
from rank-one and diagonal terms and the Sherman-Morrison solu-
tion [17] can be directly applied without any substantial increase in
computational cost.

The y subproblem for (12) can be decomposed into the indepen-
dent problems

arg min
y2

λ ‖α� y2‖1 + (ρ/2) ‖x− y2 + u2‖22 (15)

arg min
y0,y1

µ
∥∥∥√y2

0 + y2
1

∥∥∥
1

+ (ρ/2) ‖Γ0x− y0 + u0‖22
+ (ρ/2) ‖Γ1x− y1 + u1‖22 . (16)

The solution for (15) is the same as that for (6), and (16) can be
solved by use of the block soft thresholding operation [15, Sec.
6.5.1] applied in the same way as in the ADMM algorithm for the
standard isotropic TV denoising problem [20, 21], [22, Sec. 4.1], i.e.

yl =
zl√

z20 + z21
max

(
0,
√

z20 + z21 −
µ

ρ

)
l ∈ {0, 1} (17)

where zl = Γlx + ul for l ∈ {0, 1}.

3.2. Vector TV on Coefficient Maps

Instead of independently applying scalar TV to each coefficient map,
one can treat the set of coefficient maps as a multi-channel image and
apply Vector TV [19], originally designed for restoration of colour
images. The corresponding extension of the CBPDN problem can
be written as

arg min
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2

+ λ
∑
m

αm ‖xm‖1 +

µ
∥∥∥√∑

m

βm
[
(g0 ∗ xm)2 + (g1 ∗ xm)2

]∥∥∥
1
. (18)

Using the Gl as defined in Sec. 3.1, the TV term can be written as

µ
∥∥∥√∑

m

βm
[
(G0xm)2 + (G1xm)2

]∥∥∥
1
.

Defining IB =
(
I I . . . I

)
and

Γl =


√
β0Gl 0 . . .
0

√
β1Gl . . .

...
...

. . .

 (19)

allows further reduction to µ
∥∥∥√IB(Γ0x)2 + IB(Γ1x)2

∥∥∥
1
.

Problem (18) can be written in standard ADMM form as

arg min
x,y0,y1,y2

1

2

∥∥Dx− s
∥∥2
2

+ λ ‖α� y2‖1 + µ
∥∥∥√IBy2

0 + IBy2
1

∥∥∥
1

s.t.

 Γ0x
Γ1x
x

−
 y0

y1

y2

 = 0 . (20)
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The resulting x subproblem has the same form as (13) and can be
solved in the same way. The y2 subproblem is the same as (15) and
can be solved in the same way, while the y0,y1 subproblem, which
only differs from (16) in the first term, can be solved by

yl =
zl√

IBz20 + IBz21
max

(
0,
√
IBz20 + IBz21 −

µ

ρ

)
(21)

where zl = Γlx + ul for l ∈ {0, 1}.

3.3. Scalar TV in Image Domain

The use of TV regularization here is motivated as an exploration of
additional or alternative forms of regularization to the standard `1
regularization applied to the coefficient maps x. An alternative way
of introducing TV regularization, however, would be to consider it
as a regularization on the components Dmxm of the reconstructed
image, which can be written as

arg min
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2

+ λ
∑
m

αm ‖xm‖1 +

µ

∥∥∥∥
√(

g0 ∗
∑
m

βmdm ∗ xm

)2
+
(
g1 ∗

∑
m

βmdm ∗ xm

)2∥∥∥∥
1

. (22)

The final TV term can be expressed as

µ

∥∥∥∥
√(∑

m

βm(g0 ∗ dm) ∗ xm

)2
+
(∑

m

βm(g1 ∗ dm) ∗ xm

)2∥∥∥∥
1

.

Introducing linear operators Gl,m defined such that Gl,mx =
βm(gl ∗ dm) ∗ x, this can be written as

µ

∥∥∥∥
√(∑

m

G0,mxm

)2
+
(∑

m

G1,mxm

)2∥∥∥∥
1

,

and defining Γl =
(
Gl,0 Gl,1 . . .

)
allows further reduction

to µ
∥∥√(Γ0x)2 + (Γ1x)2

∥∥
1
.

Problem (22) can be written in standard ADMM form as

arg min
x,y0,y1,y2

1

2

∥∥Dx− s
∥∥2
2

+ λ ‖α� y2‖1 + µ
∥∥∥√y2

0 + y2
1

∥∥∥
1

s.t.

 Γ0x
Γ1x
x

−
 y0

y1

y2

 = 0 . (23)

The resulting x subproblem corresponding to (5) has the form

arg min
x

1

2
‖Dx− s‖22 +

ρ

2
‖Γ0x− y0 + u0‖22 +

ρ

2
‖Γ1x− y1 + u1‖22 +

ρ

2
‖x− y2 + u2‖22 . (24)

and the solution of the equivalent DFT domain problem is given by

(D̂HD̂+ρI + ρΓ̂H
0 Γ̂0 + ρΓ̂H

1 Γ̂1)x̂ = D̂H ŝ + ρ
(
ŷ2 − û2 +

Γ̂H
0 (ŷ0 − û0) + Γ̂H

1 (ŷ1 − û1)
)
. (25)

Although the left hand side has the same algebraic form as that
of (14), here Γ̂H

0 Γ̂0 and Γ̂H
1 Γ̂1 are rank-one rather than diagonal, and

can therefore not be grouped together with the ρI term as in the solu-
tion for (14). In this case the left hand side is rank-three plus a diag-
onal: while it cannot be solved using the simple Sherman-Morrison
approach, there is still an efficient solution via iterated application of
the Sherman-Morrison formula, as used to solve the CBPDN prob-
lem for a multi-channel image and dictionary [23]. This involves a

greater cost in terms of computation time, but there is a correspond-
ing reduction in memory requirements because y0 and y1 are only
of the size of the image rather than of the size of the set of coefficient
maps.

The y subproblem for (23) has the same form as (15) – (16), and
can be solved in the same way.

4. RESULTS

(a) Image 1 (b) Image 2 (c) Image 3

(d) Image 4 (e) Image 5

Fig. 1. Set of 256× 256 pixel noise-free test images.

The performance of standard block-based sparse coding and
the different convolutional sparse coding methods described in Sec-
tions 2 and 3 was compared on a Gaussian white noise restoration
problem. The standard sparse coding was computed via the Basis
Pursuit DeNoising (BPDN) problem (i.e. problem (2) where D
is a standard dictionary matrix) and the resulting denoised blocks
were aggregated via averaging (weighted by the number of blocks
covering each pixel) to obtain a denoised image.

Two different dictionaries, one standard and one convolutional,
were learned from the same set of ten training images (selected from
images on Flickr with a Creative Commons license) of 1024× 1024
pixels each. The convolutional dictionary consisted of 128 filters of
size 8× 8, and was learned via the convolutional dictionary learning
algorithm described in [2], while the standard dictionary consisted
of 128 vectors of 64 coefficients each (i.e. a vectorised 8 × 8 im-
age block), and was learned via a non-convolutional variant of the
algorithm used for learning the convolutional dictionary, applied to
all 8 × 8 image blocks in the training images. The standard dic-
tionary was used for the BPDN experiments and the convolutional
dictionary was used for all CBPDN experiments.

A set of five greyscale reference images, depicted in Fig. 1, was
constructed by cropping regions of 256 × 256 pixels from well-
known standard test images. The regions were chosen to contain
diversity of content while avoiding large smooth areas, and the size
was chosen to be relatively small so that it would be computation-
ally feasible to optimise method parameters via a grid search. The
reference images were scaled so that pixel values were in the inter-
val [0, 1], and corresponding test images were constructed by adding
Gaussian white noise with a standard deviation of 0.05. Following
standard practice [24][6, Sec. 3], the CBPDN decomposition was
applied to highpass filtered images, obtained by subtracting a low-
pass component computed by Tikhonov regularization [25, pg. 3]
with regularization parameter λL = 2.0.
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Test Image
Method 1 2 3 4 5
BPDN 29.47 32.91 30.08 31.73 30.19
CBPDN 29.31 32.70 29.76 31.27 30.09
CBPDN + Grd 29.28 32.76 30.02 31.22 30.12
CBPDN + STV 30.17 33.01 29.90 32.09 30.34
CBPDN + VTV 29.60 33.04 29.96 31.63 30.31
CBPDN + RTV 29.28 32.84 29.76 31.29 30.19

Table 1. Comparison of denoising performance (PSNR in dB) of
the different denoising methods for each of the five test images, with
parameters individually optimised for each image. Bold values in-
dicate the best performing CBPDN method. An italic value in the
BPDN row indicates that BPDN gave the best overall performance
for that image.

For the first set of experiments, the results of which are displayed
in Table 1, the denoising performance of the different methods was
individually optimised for each image via a search over a logarithmi-
cally spaced grid on the λ and µ parameters. The main points worth
noting are:

• BPDN is consistently better than CBPDN by a small margin.
• CBPDN + Grd (`2 of gradient regularization, as in [6, Sec.

4]) gives very similar performance to CBPDN, being slightly
better on some test images and slightly worse on others.

• CBPDN + STV (see Sec. 3.1) gives the best overall perfor-
mance on three of the five test images, with performance
within a few tenths of a dB of the best in the other cases.
It is consistently better than CBPDN, and better than BPDN
in all but one of the test cases.

• In a comparison between CBPDN + STV and CBPDN + VTV
(see Sec. 3.2), the former is sometimes better by a moderate
margin, but when it is worse this is by a very small amount.

• CBPDN + RTV (see Sec. 3.3) is always worse than the other
two TV-augmented CBPDN methods, and is sometimes no
better than CBPDN.

The computation times per iteration for the different methods were
approximately 0.5 s for BPDN and CBPDN, 0.6 s for CBPDN + Grd,
2.2 s for CBPDN + STV and CBPDN + VTV, and 2.4 s for CBPDN
+ RTV, i.e. the improved performance of the TV methods is obtained
at a significant computational cost.

Test Image
Method 1 2 3 4 5
CBPDN + Grd -2.31 -3.16 -2.51 -1.39 -0.94
CBPDN + STV +0.04 -0.22 -0.04 -0.03 +0.03
CBPDN + VTV -0.64 -0.77 -0.89 -0.29 -0.34
CBPDN + RTV -1.28 -0.66 -0.73 -0.47 -0.33

Table 2. PSNR difference in dB between results for optimisation
over both λ and µ (Table 1) and for optimisation over µ only, with
λ = 0.

The second set of experiments evaluated the efficacy of the terms
augmenting plain CBPDN by comparing the denoising performance
at the best choices of both λ and µ (as in Table 1) with the same
method with λ fixed to zero and optimisation only over µ. (There
is no need to perform a corresponding comparison with µ fixed to
zero since this corresponds to the baseline CBPDN method.) The

differences between the PSNR values of the methods optimised over
both parameters and only optimised over µ are displayed in Table 2.
Note that, for CBPDN + STV, there is a positive difference in two
cases and a very small negative difference in two other cases, i.e. for
most of the test images, the convolutional representation with only a
TV regularization term is competitive with the baseline CBPDN. For
all of the other methods the performance is substantially degraded
without the `1 term.

Test Image
Method 1 2 3 4 5
BPDN 29.47 32.03 29.92 31.38 30.19
CBPDN 29.24 31.73 29.54 30.89 30.00
CBPDN + STV 29.90 32.36 29.86 31.68 30.29
CBPDN + VTV 29.54 32.35 29.86 31.34 30.25
CBPDN + RTV 29.16 32.49 29.76 31.25 30.19

Table 3. Comparison of denoising performance (PSNR in dB) of
the different denoising methods for each of the five test images, all
with the same parameters obtained by optimising over a separate
image set. Bold values indicate the best performing CBPDN method.
An italic value in the BPDN row indicates that BPDN gave the best
overall performance for that image.

The final set of experiments considers a more realistic scenario
in which ground truth is not available for parameter selection for the
test images, making it necessary to choose the λ and µ parameters by
optimising over a distinct parameter selection image set. The same
λ and µ parameters were selected for all test images by finding the
values giving the best average performance for a separate image set,
again via a search on a logarithmically spaced grid. The results for
this experiment are presented in Table 3. Overall, the relative per-
formances of the different methods do not differ qualitatively from
those of the experiments reported in Table 1. (CBPDN + Grd is ex-
cluded from this set of experiments since it is clear from the first two
sets of experiments that it is not competitive.)

5. CONCLUSIONS

While a strictly apples-to-apples comparison between BPDN and
CBPDN denoising methods is difficult to construct, the careful
attempt reported here indicates that BPDN is slightly superior to
baseline CBPDN, but that augmentation of the baseline CBPDN
functional with the appropriate TV term substantially boosts per-
formance, surpassing that of BPDN in all but one of the five test
cases considered here. With respect to the specific form of addi-
tional TV term, scalar TV applied independently to each coefficient
map is somewhat superior to a joint vector TV term over all of
the coefficient maps, and both of these methods are substantially
superior to TV applied in the reconstruction domain rather than to
the coefficient maps, indicating that the gain from a TV term on
the coefficient maps should not be viewed simply as resulting from
denoising via a synthesis of sparse representation and TV image
models. It is particularly interesting that the convolutional sparse
coding problem with only an STV penalty is competitive in perfor-
mance with the usual CBPDN form with only an `1 penalty. At a
more abstract level, these results suggest that penalties that exploit
the spatial structure of the coefficient maps are necessary to achieve
the true potential of the convolutional model.

Implementations of the algorithms proposed here are included
in the Python version of the SPORCO library [26, 25].
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