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ABSTRACT 
 
Understanding the image formation inside plenoptic cameras is 
significant for the investigations of improving the low spatial 
resolution. Most researches explore the image formation from the 
perspective of geometric optics. However, as the hardware 
components in combination with low-aperture optical systems 
become smaller and smaller, geometric analysis will no longer be 
valid due to diffraction effects. In this paper, a wave-optic-based 
model is proposed that uses the Fresnel diffraction equation to 
propagate the whole object field into the plenoptic systems. The 
proposed model employs averaging of intensities on the sensor 
from uncorrelated coherent wave to avoid interference during 
propagations among the optical component planes. Besides, by 
utilizing the method of multiple partial propagations, the proposed 
model is much flexible at sampling on propagation planes. In order 
to verify the effectiveness of the proposed model, numerical 
simulations are conducted by comparing with existing wave optic 
model under different optical configurations of plenoptic cameras. 
Results demonstrate that the proposed model can describe the light 
field image formation properly. In addition, the time for image 
formation has been reduced by a factor of 19.22 using the 
proposed model. 

Index Terms— Plenoptic cameras, image formation, wave 
optics, Fresnel diffraction equation, multiple partial propagations 
 

1. INTRODUCTION 
 
Light field cameras, also known as plenoptic cameras, have 
attracted an increasing interest in recent years after Ng introduced 
the first prototype and processing algorithms in [1]. With the aid of 
inserting a microlens array (MLA) between the main lens and 
traditional image sensor, plenoptic cameras possess the ability to 
record 4D data that enable refocusing [1], depth estimations [2-3], 
and saliency detection [4], etc. Afterwards, this plenoptic setup has 
been implemented in a microscope by Levoy et al [5]. As the 
spatial resolution of sub-aperture images is determined by the 
number of micro lens in plenoptic cameras 1.0, known as Lytro [6], 
the spatial resolution is too low since the number of micro lens is 
typically small. In order to investigate the possibility of recovering 
spatial resolution, it is useful to understand the image formation 
inside plenoptic cameras. However, most researches like [7-10] 
analyzed the image formation from the perspective of geometric 
optics without taking into account the diffraction effects. The 
continuing miniaturization of hardware components in 
combination with low-aperture optical systems will lead to the 
invalidity of geometric analysis.  

Considering the effects of diffraction play important roles in 
plenoptic camera’s design and performance, it is more accurate to 
analyze the image formation using wave optics. Shroff and Berkner 
[11] provided detailed field propagation analysis to develop a 
forward image formation model for plenoptic cameras 1.0 and 
utilized a reconstruction method that allowed the recovery of the 
object information beyond the resolution limit. Helin et al [12] and 
Sahin et al [13] further extended the wave optic model proposed in 
[11] for better object information recovery. Since incoherent 
imaging cases are generally considered in plenoptic cameras 1.0 
system, this wave optic model needs to propagate the object field 
point by point into the system to obtain the individual impulse 
response on the sensor. The intensities of all impulse responses are 
then accumulated together to satisfy the incoherent imaging. 
Therefore, this solution requires much more time to obtain a 
complete incoherent result.  

For the purpose of reducing the image formation time, this paper 
presents a wave optic model that propagates the whole object field 
into plenoptic cameras 1.0 system instead of point by point using 
the Fresnel diffraction equation [14]. Also, the coherence 
interference during propagation has been solved by employing the 
average of intensities on the sensor from uncorrelated coherent 
wave [15] to produce incoherent results. Besides, the proposed 
model adopts the method of multiple partial propagations [16] to 
relax the sampling constraints among the propagation planes. 
Numerical simulation results demonstrate that the light field image 
formation can be described properly using the proposed model. In 
addition, compared with the wave optic model proposed in [11], 
the proposed model has reduced the image formation time by a 
factor of 19.22 on average. 

The rest of the paper is organized as follows. Section 2 introduces 
the proposed wave optic model of image formation analysis for 
plenoptic cameras 1.0 system in detail. Numerical simulation 
results and analyses are provided in Section 3. Conclusions are 
drawn in Section 4. 
 

2. INCOHERENT IMAGE FORMATION MODEL 
 
Figure 1 illustrates the schematic layout of a general plenoptic 
camera 1.0 system. ( , )ξ η , ( , )u v , ( , )x y and ( , )s t  denote the 
spatial coordinates of object plane, main lens plane, MLA plane 
and sensor plane, respectively. The distances among the optical 
component planes satisfy the Gaussian equation [11-13], which are 
given by 
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mainz z F
+ = , 

2 3

1 1 1 ,
MLAz z f

+ =                          (1) 
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where mainF  and MLAf  represent the focal length of main lens and 
MLA, respectively. 

Object Main lens MLA Sensor

Imaging subsystem 1
Imaging subsystem 2

 
Fig. 1. Schematic layout of a plenoptic camera 1.0 system, with the 
imaging subsystem 1 containing the main lens (light white) and 
imaging subsystem 2 (gray) containing the MLA [11,17]. 

Wave analysis is performed in [11] to analyze the optical layout 
shown in Fig. 1. In the formulas, paraxial approximation is 
exploited and lenses are assumed to be thin and aberration-free. 
According to [11], the intensity at the sensor plane is given by 
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where λ  is the wavelength; k  is the wavelength number and 
equals to 2 /π λ ; 1M  is the magnification from object plane to the 
MLA plane and equals to 2 1/z z− ; 1Mξ ξ′ =  and 1Mη η′ = ; 

( , )P x y  is the generalized pupil function of MLA which consists 
of M N×  micro lenses and 1d  is the corresponding diameter of 

each micro lens; 1 ( , )h x y′  is defined as the Fourier transform of 
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and

1( , )P u v  is the generalized pupil function of main lens; 0 ( , )I ξ η  
satisfies  

0( , ) ( , ) ( , ) ( , ),o oU U Iξ η ξ η ξ η δ ξ ξ η η∗ = − −

              (3) 

where ( , )oU ξ η  represents the object field. In order to satisfy the 
incoherent imaging, the object field is propagated into the 
plenoptic camera 1.0 system point by point to obtain the individual 
impulse response on the sensor, and then the intensities of all 
impulse responses are accumulated together to form the final result, 
which is surely time-consuming. 

2.1. Proposed wave optic model 

Considering the time cost, we propose a wave optic model that 
propagates the whole object field ( , )oU ξ η  to the sensor plane 
simultaneously. As pointed in [14], the wave field from an ideal 
point source is perfectly spatially coherent, and if the field from the 
point source is observed at two points in space, the amplitudes will 

be perfectly correlated. Therefore, coherence will be a big issue in 
the simultaneous wave field propagation. In order to decrease the 
coherence, the proposed model applies random transmittance 
screens to the object field 0 ( , )U ξ η  [14-15]. The procedure is 
illustrated in Fig. 2. 

Object Main lens MLA Sensor
Random 

transmittance 
‘screens’

 
Fig. 2. Illustration of the proposed wave optic propagation model. 

More specifically, the object field is now modeled as 
[ ]( , ) ( , ). exp * 2 * (Num) ,oU U i randξ η ξ η π= ∗            (4) 

where rand  function produces an Num Num×  array of random 
values of uniform distribution over the interval [0,1] and Num  
denotes the number of grid spacing on the object plane. 
Multiplying by 2π  scales the values to range over all possible 
phase values [0,2π] so that every sample point has a phase that is 
independent and uncorrelated from every other point. Then, the 
new object field ( , )U ξ η  propagates to main lens plane using the 
Fresnel propagation equation and the corresponding field on the 
main lens plane is described by 
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After generating the field on the main lens plane, the field will pass 
through the main lens and arrive at the MLA plane. Similarly, the 
field on the MLA plane can be formulated by 
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where ( , )U u v′  is the field after traversing the main lens and is 
given by 
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Afterwards, the field ( , )U x y  will pass through the MLA plane, 
which is described by 
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Finally, ( , )U x y′  reaches to the sensor plane and gives 
3

2 2

3 3
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2
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Therefore, the intensity of the whole object wave field on the 
sensor is given by 

2
1( , ) ( , ) .I s t U s t=                                      (10) 

The process is repeated 1N  times with different realizations of 
phase and the intensities are averaged to produce the final 
incoherent result, which means 
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2.2. Relaxed sampling with partial propagations 

In order to implement numerical simulations of the above Fresnel 
diffraction expressions in Section 2.1, issues related to discrete 
sampling need to be considered. Note that the superposition 
integral in Eqs. (5), (6) and (9) can be written in a convolution 
integral. Then, the convolution theorem is used to evaluate the 
Fresnel diffraction expressions via two Fast Fourier Transforms 
(FFTs) and one inverse FFT after discretization. Take Eq. (5) as an 
example, the evaluation is realized as 

{ } { }{ }1( , ) ( , ) ( , ) ,U u v U h u vξ η− ′= ℑ ℑ ℑ                    (12) 

where ( , )h u v  is given by 
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                      (13) 

However, if the two-dimensional discrete convolution is simply 
performed to implement the numerical simulations, we will have 
no control over the sampling spacing in the observation plane, 
such as the main lens plane in imaging subsystem 1. We will be 
stuck with 1 2δ δ=  where 1δ  and 2δ  are the grid spacing on the 
object plane and main lens plane, respectively. For fixed value of 

2δ , cases like the field on the observation plane cannot be sampled 
adequately may happen, which will lead to aliasing on the 
subsequent image formation results.  

For the sake of having more flexibility in selecting the grids on 
the observation plane, for example, the main lens plane in imaging 
subsystem 1, the proposed model adopts the method of multiple 
partial propagation provided by Schmidt [16] that introduces 
“middle” planes between the source (object) plane and the 
observation (main lens) plane. Instead of getting into the multiple 
partial propagations, descriptions for two partial propagations are 
elaborated here, whose geometry is displayed in Fig. 3. 
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(Object) 
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Observation plane
(main lens) 

HG

 
Fig. 3. Grid spacing for two partial propagations. 

As shown in Fig. 3, using the similar triangle principles, we have 
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By introducing scaling parameters 1 1/z zα = ∆  and 2 1/z zβ = ∆ ∆ , 
we can find that [14,16] 
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By denoting 1 ξ ηr i + j=  and 2 u vr i + j= , equation (5) can be 
rewritten for simplicity as 
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Manipulating the exponential to introduce the scaling parameter 
β , we have 
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Then, substituting Eq. (18) into Eq. (17) gives 
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where 1( )U ′ r  is given by 
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Then, defining the scaled coordinate and propagation distance as 
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and substituting into Eq. (19), we have 
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Comparing it with Eqs. (5), (6) and (9), Eq. (22) can also be 
described in a convolution integral form. Therefore, convolution 
theorem can be applied at this point and substituting back to the 
original coordinates allows keeping all of the details. Since the 
scaling parameter β  is determined by the location of the “middle” 
plane, it is adjustable as the location changes. This leads to the 
flexibility of grid spacing on the observation (main lens) plane, as 
concluded from Eq. (16). It is straightforward to generalize the two 
partial propagations to multiple partial propagations by introducing 
multiple “middle” planes between the source (object) plane and the 
observation (main lens) plane. Further details can be found in [16].  

3. SIMULATION RESULTS 

3.1. Simulation system 

To demonstrate the effectiveness of the proposed model, numerical 
simulations are conducted under different optical configurations of 
plenoptic cameras 1.0 system. The performance of the proposed 
model is compared with the wave optic model presented in [11]. 
Parameters used in the numerical simulations are summarized in 
Table.1. The parameters of optical components, wavelength and 
propagation distances in the first optical configuration are set as 
those in [11]. The second optical configuration makes changes in 
the parameters of MLA. F-number of main lens and MLA keeps 
equal for both optical configurations. In addition, both in-focus 
and close-to-focus cases are considered as [11].  
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Table.1. Parameters of two simulated imaging systems. 

Parameters Imaging 
system 1 

Imaging 
system 2 

Wavelength of light rays, λ  450nm 450nm 
Focal length of main lens, mainF  40mm 40mm 

Pupil diameter of main lens, 1D  4mm 4mm 

Focal length of MLA, microf  4mm 1.39mm 
Pupil diameter of microlens, 1d  160μm 53.3μm 
Pixel size on the sensor 1.3μm 1.3μm 
Number of grid spacing, Num  3346 3346 

Propagation distance between object 
and main lens, 1z   

64mm 
(close-to-

focus) 

64mm 
(close-to-

focus) 
65mm 

(in-focus) 
65mm 

(in-focus) 
Propagation distance between main 
lens and MLA, 2z   104mm 104mm 

Propagation distance between MLA 
and sensor, 3z   4.16mm 1.4mm 

3.2. Results and analysis 

Numerical simulation experiments are conducted in MATLAB 
R2014a development environment on a PC with Intel(R) Xeon(R) 
CPU E5-2620 v3@2.40GHz and 64GB RAM. Figures 4(b) and (c) 
depict the incoherent imaging results derived from the wave optic 
model in [11] and the proposed model, respectively, using the 
parameters of imaging system 1. Figures 5(a) and (b) depict the in-
focus incoherent imaging results derived from the wave optic 
model in [11] and the proposed model, respectively, using the 
parameters of imaging system 2, while Figs. 5(c) and (d) depict the 
results of close-to-focus case. The imaging results derived from the 
proposed model are obtained with 1 300N =  and all imaging 
results are normalized to the same scale for display and comparison 
calculation. The performances are evaluated in terms of structural 
similarity (SSIM) and running time. SSIM is calculated by taking 
the results obtained from the wave optic model in [11] as the 
ground truth. The running time is listed in Table.2. 

   
(a) (b) (c) 

Fig. 4. Simulation results for a 5×5 array of lenslets. (a) Pristine 
object used in all numerical simulations; (b) Cropped plenoptic 
sensor data obtained by using the wave optic model in [11]; (c) 
Cropped plenoptic sensor data obtained by using the proposed 
model with SSIM=0.9280.  

  
(a) (b) 

             
(c) (d) 

Fig. 5. Simulation results for a 23×23 array of lenslets. (a) and (c) 
are the in-focus and close-to-focus cropped plenoptic sensor data 
obtained by using the wave optic model in [11]; (b) and (d) are the 
corresponding cropped plenoptic sensor data obtained by using the 
proposed model. The SSIMs are 0.9295 and 0.9158, respectively.  

Table.2. Results of running time of numerical simulations. 
        Simulation time 

                       (s) 
Imaging system 

[11] Proposed 
 [11] 
vs. 

Proposed 
1 3 65z mm=  333487.7 17216.3 19.37 

2 
3 64z mm=  352682.1 18101.4 19.48 

3 65z mm=  373896.1 19882.7 18.81 
Average 353355.3 18400.1 19.22 

As can be seen from Figs. 4 and 5, the proposed model can 
describe the light field image formation properly. The SSIMs 
indicate the effectiveness of the proposed model. Besides, the 
statistical simulation time listed in Table.2 demonstrates that the 
time for image formation using the proposed model is much 
shorter than that using the wave optic model presented in [11]. The 
image formation time has been reduced by a factor of 19.22 on 
average, which manifests the high efficiency of the proposed 
model.  

Decreasing 1N  can further reduce the image formation time while 
“speckle” noise exists in the plenoptic sensor data will be more 
severe, and vice visa [14-15]. According to the wave propagation 
analysis in Section 2, parallel processing can be applied to both 
kinds of models and the proposed wave optics model can be easily 
extended to plenoptic cameras 2.0 system, both of which are taken 
as our future works. 

4. CONCLUSIONS 

In this paper, a wave-optics-based model is proposed to analyze 
the light field image formation using Fresnel diffraction equations. 
The proposed model employs the average of intensities on the 
sensor from uncorrelated coherent wave to avoid the interference 
so that incoherent imaging results can be derived. Besides, the 
method of multiple partial propagations is applied to the proposed 
model in order to obtain flexible and adequate discrete sampling. 
Numerical simulation results demonstrate that the proposed model 
can describe the light field image formation properly and the time 
for image formation using the proposed model is much shorter than 
that using the existing wave optic model.  
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