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ABSTRACT

Most of the algorithms for tomographic reconstruction
face the same problem: high computational complexity. In
order to tackle this problem, this paper proposes a general
multi-resolution approach that enables a flexible choice of
reconstruction focus and thus saves computational power in
reconstructions. The approach is demonstrated in this pa-
per based on a reconstruction algorithm using a (improper)
Markov random field prior with sparsifying NUV terms (nor-
mal with unknown variance), where the unknown variances
are learned by approximate EM (expectation maximization).
The experimental and practical results show that both for sim-
ulated and real-world objects the proposed framework yields
satisfying results with much lower computational cost.

Index Terms— Tomographic reconstruction, multi-
resolution, NUV, computational complexity

1. INTRODUCTION

Tomographic reconstruction is a multidimensional inverse
problem where the goal is to obtain an estimate of a 2D or
3D object from noisy projections. It has been a challenge
for decades due to the huge dimension of the corresponding
mathematical objects and different physical artifacts. For
example, the reconstruction of a 3D cube discretized with
1000 elements on each dimension involves 109 variables and
can easily require a memory of several hundred Gigabytes.
Despite its many deficiencies, the filtered back projection
(FBP) is nowadays still the most widely used method [1].
The main reason for that is the high computational cost of
more sophisticated reconstruction algorithms.

Therefore, the complexity reduction of those reconstruc-
tion algorithms is crucial for their practical use. Several
attempts to accelerate the computations by parallelization
using GPUs [2–4] have been proposed. Although the re-
duction in computation time is enormous, it does not lower
the massive memory requirement, which is still a bottleneck
for standard computers. Besides, those parallelizations are
usually designed specifically for certain algorithms and are
thus not portable. Inspired by the fact that a big part of the
reconstructed object in tomography is just emptiness or not

of actual interest, we propose a general multi-resolution ap-
proach to reduce the computational complexity by using a
multi-resolution grid and a multi-stage reconstruction. The
multi-resolution approach enables a flexible distribution of
computational power and reduces both computational time
and required memory. Moreover, the results have arguably
good quality in the area of interest. A number of tomographic
reconstructions, which previously could not achieve a satis-
factory resolution on ordinary computers, can now be done
with the multi-resolution approach.

A great variety of tomographic reconstruction algorithms
exists [5–11] that outperform the FBP approach. Some of
them try to exploit the sparsity in the gradient and use regu-
larization involving the total variation [8, 9]. Several authors
have also proposed algorithms using Markov random field
(MRF) [10,11], and [11] also demonstrates a message passing
method. In this paper we use an algorithm using a MRF prior
with sparsifying NUV terms. The reconstruction algorithm
is inherited from [12, 13] but extended with a new ability to
handle boundary conditions. The unknown parameters (vari-
ances) of the MRF prior are learned by an approximate EM
algorithm. The pertinent computations boil down to iterative
scalar Gaussian message passing, which scales linearly with
the number of voxels.

The paper is structured as follows: the general multi-
resolution approach is proposed and illustrated in Section 2.
In Section 3, we introduce the specific reconstruction algo-
rithm based on [12]. The experimental and practical results
are presented in Section 4.

2. MULTI-RESOLUTION APPROACH

The multi-resolution approach enables a computationally effi-
cient method of reconstruction in tomography. The basic idea
is to reconstruct the area of interest with high resolution and
the remaining areas with lower resolution.

2.1. Notation

We assume that the voxels (or pixels) of the object to be re-
constructed are arranged in a 3 (or 2)-dimensional rectangu-
lar grid. Each voxel is associated with a unique spatial index
s` = (i, j, k), ` ∈ {1, . . . , L} and a random variable Xs`
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Uniform-resolution grid Multi-resolution grid

Fig. 1. Different grids for a simple object. Left is the uniform-
resolution grid, right is the multi-resolution grid.

denoting the voxel value, where L is the total number of vox-
els. The measurements y ∈ RN are obtained by projecting
the object to the detector. The object x = (x1, . . . , xL)T

and the measurements y are linked by the projection matrix
A ∈ RN×L with y = Ax. The projection matrix is generated
by methods such as distance-driven projection [14]. The goal
is to reconstruct the object x from the measurements y.

We denote by C = {cp : cp ∈ R, p ∈ {1, . . . , P}} the
set of boundary conditions for boundary voxels. Let Θ with
size P be the set of all boundary voxel-condition pairs (`, p).
Note that one boundary pixel can have multiple corresponding
boundary conditions. Let ∆ be the set of nearest-neighbor
pairs: for any two voxels at locations s` = (i, j, k) and s`′ =
(i′, j′, k′), (`, `′) ∈ ∆ if and only if both |i− i′|+ |j − j′|+
|k − k′| = 1 and ` < `′.

2.2. An Example

Consider the toy example in Fig. 1, where the gray circle with
a black ellipse inside are the object to be reconstructed and
the ellipse is the actual area of interest.

With the multi-resolution approach the reconstruction is
performed as follows: the object is initially reconstructed
with a very coarse resolution, as the black grid shown in the
right part of Fig. 1. Obviously, in the 4 central pixels we
find something which is different from the background and
thus consider them as the current area of interest, then we
use a higher resolution (the red grid) to reconstruct this area
and find more details in the 2 central right pixels. Finally,
we update the area of interest to these two pixels and recon-
struct them with the highest resolution (the blue grid). The
final estimate of the object x̂ can be obtained by merging the
reconstructions from all three steps.

It can be seen from Fig. 1 that the pixel number in the
multi-resolution grid (16+16+32 = 64) is much less than in
the uniform-resolution grid (32∗32 = 1024), where the whole
space was filled with the resolution of the blue grid. We are
going to see that in this way the computational complexity can
be substantially reduced while preserving the reconstruction
quality in the area of interest.

Algorithm 1 Successive Cancellation Algorithm
Input: y0

Output: Object estimate x̂

1: Generate A0 and C0

2: Reconstruct x̂0 from y0, C0 and A0

3: i = 1
4: while unsatisfied with the reconstruction do
5: Choose a new area of interest Si and a new resolution
6: yi = yi−1 −Ai−1x̂

Sc
i
i−1

7: Generate Ci according to x̂i−1

8: Generate Ai for Si
9: Reconstruct x̂i with yi, Ci, and Ai

10: i = i+ 1
11: end while
12: Merge the results x̂0 . . . x̂i into x̂

2.3. The Successive Cancellation Algorithm

The general procedure of the multi-resolution approach is
stated in Algorithm 1. The inputs are the measurements, the
output is the final object estimate.

The area of interest Si is a set of voxels that form a rectan-
gular part of the object with a certain resolution. In Algorithm
1, the resolution always becomes increasingly higher as the
algorithm proceeds. The new measurements yi for each step
are obtained by successive cancellation where x̂

Sc
i
i is a vector

same as x̂i except that the elements included in Si are set to 0.
The set of boundary condition Ci for each step is obtained by
directly taking the previous reconstructed voxel values, which
lie on the border of Si. Concerning the new projection matrix
Ai, although most of the projection methods usually assume
that the rotation axis is at the center of the object, it is straight-
forward to obtain the projection matrix for an arbitrary part of
an object using the linearity of the projection.

The approach is applicable to any reconstruction method
that can handle boundary conditions. In the next section, we
develop this approach for a specific reconstruction algorithm.

3. SPECIFIC RECONSTRUCTION APPROACH

We now work out the proposed multi-resolution approach by
extending the reconstruction algorithm from [12] so that it can
handle boundary conditions. We thus only introduce some
basic definitions and the differences to [12].

3.1. Prior Model

The interesting part of the statistical model is the (improper)
prior. Here we penalize not only the differences between
neighboring voxels but also between voxels and boundary
conditions. That is to say, except the U`,`′ we define the
slack variables U`,p for each boundary voxel-condition pairs
(`, p) ∈ Θ as

U`,p = Xs` (1)

6519



+

+

+

+

U˜̀,˜̀′

N (0, σ2
ε + σ2

˜̀,˜̀′
)

U`′,˜̀′

N (0, σ2
ε + σ2

`′,˜̀′
)

U`,`′

N (0, σ2
ε + σ2

`,`′)

U`,˜̀

N (0, σ2
ε + σ2

`,˜̀
)

=
Xs˜̀

=

==
Xs`

U˜̀,p3

N (cp3 , σ
2
ε + σ2

˜̀,p3
)

...

· · ·
Xs˜̀′

...

· · ·
Xs`′

U`′,p4

N (cp4 , σ
2
ε + σ2

`′,p4)N (cp1 , σ
2
ε + σ2

`,p1
)

U`,p2

N (cp2 , σ
2
ε + σ2

`,p2
) U`,p1

Fig. 2. Factor graph representation of the prior model with
nearest neighbor pairs {(`, `′), (`, ˜̀), (`′, ˜̀′), (˜̀, ˜̀′)} ⊂ ∆ and
voxel-boundary pairs {(`, p1), (`, p2), (˜̀, p3), (`′, p4)} ⊂ Θ.

with U`,p ∼ N (cp, σ
2
ε +σ2

`,p). Rewriting the relations U`,`′ =
Xs` − Xs`′ and (1) as U = DX with a pertinent matrix D,
we define our (improper) prior model as

p̃ (x; σ2 ) =

∫
δ(u−Dx) p(u|σ2) du (2)

=
∏

(`,`′)∈∆

1

2π(σ2
ε + σ2

`,`′)
exp

(
− (x` − x`′)2

2(σ2
ε + σ2

`,`′)

)

·
∏

(`,p)∈Θ

1

2π(σ2
ε + σ2

`,p)
exp

(
− (x`p − cp)2

2(σ2
ε + σ2

`,p)

)
. (3)

where σ2
ε is a parameter of the algorithm and σ2

`,`′ and σ2
`,p

are unknown and will be estimated. From now on we use the
notation (`, `′(p)) to denote the pairs (`, `′) or (`, p).

The structure of this prior is illustrated in Fig. 2. It is spar-
sifying in the following sense: at any local maximum of the
likelihood, many estimated variance parameters σ2

`,`′(p) are
likely to be zero. The corresponding differences U`,`′(p) are
then regularized to be small (but not necessarily zero), thus
prompting smooth areas in the reconstruction. On the other
hand, when the estimated σ2

`,`′(p) are nonzero, the cost for
arbitrarily large jumps is very small, which allows for sharp
edges in the reconstruction [15,16]. The sparsity level can be
adjusted by tuning σ2

ε .

3.2. Estimation and Scalar Gaussian Message Passing

As mentioned, we wish to estimate the unknown variances
σ2 by maximizing the “likelihood”. The actual computa-
tions boil down to iterative scalar Gaussian message passing.
With a similar derivation as in [12], the maximization prob-
lem splits for each σ2

`,`′ and σ2
`,p:

σ̂2
`,`′(p) = max

(
0,E

[
‖U`,`′(p)‖2

]
− σ2

ε

)
. (4)
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Fig. 3. Factor graph representation of p(u,x,y|σ2). Top
dashed box: p̃(x;σ2). Bottom dashed box: p(y|x).

The factor graph in Fig. 3 represents the joint distribu-
tion p(u,x,y|σ2). We use iterative scalar Gaussian message
passing [17] in the factor graph of Fig. 3 to compute an ap-
proximate estimate of E

[
‖U`,`′(p)‖2

]
, which turns out to work

well in practice. If the algorithm converges, the estimated
means are correct, but the variances are not [18, 19]. The
details of this computation can be obtained through extend-
ing the algorithm in [12] by introducing boundary conditions.
Specifically, we do some extra computations in steps 2 and 3
of the message passing procedure. In step 2 we compute

−→w
X

(`,p)
s`

:= (σ2
ε + σ2

`,p)
−1 (5)

−→
ξ
X

(`,p)
s`

:= cp(σ
2
ε + σ2

`,p)
−1. (6)

In step 3, the original formulas are modified as
−→wXs`

:=
∑

`:(`,i)∈∆∪Θ

−→w
X

(`,i)
s`

+
∑

`′:(`′,`)∈∆

−→w
X

(`′,`)
s`

(7)

−→
ξXs`

:=
∑

`:(`,i)∈∆∪Θ

−→
ξ
X

(`,i)
s`

+
∑

`′:(`′,`)∈∆

−→
ξ
X

(`′,`)
s`

. (8)

After the algorithm has converged, E
[
‖U`,`′(p)‖2

]
can be

calculated from the messages in the factor graph, and σ̂2
`,`′(p)

can then be obtained from (4). Finally, messages are used to
compute the posterior means

mXs`
= (
−→
ξXs`

+
←−
ξXs`

)(−→wXs`
+←−wXs`

)−1 (9)

which form our image estimate x̂ = (mXs1
, . . . ,mXsL

)T .

4. RESULTS

Fig. 4 shows some experimental results using two 2D test
objects: first, a simulated phantom and second, a cross-
section of a (real) fossil. The multi-resolution reconstruction
is done in 3 stages, with a coarse-resolution, an intermediate-
resolution and a fine-resolution. The parameters of the re-
construction algorithm (σ2

ε and σ2
Z) decrease gradually as the

algorithm proceeds. At each stage, we used 20 iterations of
message passing and 10 EM updates.
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(a) Uniform-resolution (b) Coarse-resolution (c) Intermediate-resolution (d) Final-resolution

Fig. 4. Reconstruction results in different stages of the proposed approach. The areas of interest are framed with white boxes.
Top: a simulated phantom. Bottom: a cross-section of a fossil.

In Fig. 4 the leftmost column shows the reconstructions
with uniform-resolutions 1024 × 1024 and 800 × 800 for
the simulated phantom and the fossil respectively. The other
columns present the results of the 3 different stages of the
multi-resolution approach. The fine resolution used in the
last stage is same as that used in the uniform-resolution re-
construction.

Assuming that in Fig. 4 the smaller squares (top row) are
the final area of interest of the first object and the small pro-
tuberances, which are the fossilized bones, on the left side of
the stone (bottom row) are the final area of interest of the sec-
ond object, we can see from Fig. 4 that the multi-resolution
approach provides satisfying reconstruction results. All the
small squares are correctly recognized despite being still quite
blurred after the first step and the small details of the fos-
sil are not washed out either. For the final area of interest
of the first phantom, the squared error between the recon-
structions and the ground truth for uniform-resolution recon-
struction and multi-resolution reconstruction are 0.0007 and
0.0013 respectively. For the final area of interest of the second
phantom, the squared error between the uniform- and multi-
resolution reconstruction is 0.0017. The dynamic range of the
gray scale in the representation is [0, 1].

The decrease in computational complexity is signifi-
cant. Compared to the reconstruction with a high uniform-
resolution grid, of which the results are shown in the first
column of Fig. 4, the multi-resolution approach reduces the
computation time by 75.4% and 82.0% and the required

memory by 80.5% and 89.4% for the first and second objects
respectively. The detailed computation time and memory
consumption are given in Tables 1 and 2

Uniform Multi

Squares 12.2GB 2.2GB
Fossil 8.5GB 0.9GB

Table 1: Memory consumption

Uniform Multi

Squares 366s 90s
Fossil 185s 35s

Table 2: Time consumption

The reduction in complexity is even more significant for
3D reconstructions, since the computational complexity of the
applied reconstruction approach scales linearly with the num-
ber of pixels (voxels).

5. CONCLUSION

We proposed a general multi-resolution approach for tomo-
graphy and worked it out for a reconstruction method using a
graphical model with NUV terms. The multi-resolution ap-
proach enables the selection of an area of interest and the
flexible allocation of computational power. The specific re-
construction algorithm uses approximate EM with computa-
tions amounting to iterative scalar Gaussian message passing.
According to our results, the reconstruction in the final area
of interest is essentially as good as the reconstruction using a
uniform high-resolution grid, while the complexity is reduced
substantially in 2D and much more in 3D.
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