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ABSTRACT

The mutual interference between similar radar systems can
result in reduced radar sensitivity and increased false alarm
rates. To address the interference mitigation problems in sim-
ilar radar systems, we propose herein two slow-time coding
schemes to modulate the pulses within a coherent process-
ing interval (CPI). Specifically, the first coding scheme is de-
signed through Doppler shifting and the second is devised via
an optimization method. The proposed coding schemes are
very easy to implement in practice and the incorporation of
the coding schemes only requires slight modification of the
existing systems. Our numerical examples indicate that the
proposed coding schemes can reduce the interference power
level in a desired area of the cross-ambiguity function signif-
icantly.

Index Terms— Radar systems, mutual interference, in-
terference mitigation, slow-time coding, code optimization.

1. INTRODUCTION

In civilian radar applications, such as the automotive radar
used in vehicles [1–4] and millimeter-wave radar used in
Google’s hand gesture recognition systems [5, 6], the radar
systems massively produced on a commercial scale tend to
be quite similar, or even almost identical.

However, the increasing number of similar or identical
radar systems will result in severe mutual interferences. A
direct consequence of the mutual interference is the severe-
ly reduced radar sensitivity and increased false alarm rates.
Thus, it is vitally important to enhance the radar performance
in severe mutual interference scenarios. However, the analy-
sis of the mutual interference problem and its associated sup-
pression methods have not been widely discussed in the liter-
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ature. In [7], the author analyzed the mutual interference be-
tween frequency-modulated continuous waveforms (FMCW)
radar systems, and proposed several techniques to mitigate
the interference problem, including prepossessing and finite
impulse response (FIR) filtering. The authors in [8–10] inves-
tigated the mutual interference problems between automotive
radar systems with different types of transmissions.

In this paper, we address the mutual interference mitiga-
tion problem in similar or identical radar systems. We pro-
pose two slow-time coding schemes to reduce the interfer-
ence power level. The first coding scheme aims to shift the
Doppler frequency of the interference and separate it from the
target in the Doppler region. The second coding scheme aims
to minimize the discrete periodic cross-ambiguity function in
a desired area. We show that both methods can suppress the
mutual interferences significantly. Both approaches are low
cost and can be implemented in practical systems easily.

2. PROBLEM FORMULATION

Consider two identical radar systems operating within the
same frequency band, as shown in Fig. 1(a). We assume that
the two systems use FMCW for their transmissions (shown in
Fig. 1(b)). In addition, they have the same sweep bandwidth
and chirp duration (i.e., sweep time), denoted byB and Tchirp,
respectively. Mathematically, the transmitted waveform s(t)
can be written as follows:

s(t) =
∑∞

n=−∞
u(t− nTchirp), (1)

where u(t) = exp(j(2πfct + πKt2)), fc is the carrier fre-
quency, and K = B/Tchirp is the chirp rate.

When the two radar systems are operating simultaneously,
the received signal by one radar includes not only the target
reflections, but also the interference signal due to the trans-
mission from the other radar system. As a result, we can write
the received signal by one radar (e.g., the radar mounted on
Car 1 in Fig. 1(a)) as follows:

r(t) = yT(t) + yI(t) + w(t), (2)
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Fig. 1. Mutual interference between automotive radars. (a)
Potential source of mutual interference; (b) time-frequency
illustration of the transmit waveform, the target signal, and
the interference.

where yT(t) = αTs(t− τT) exp(j2πfd,Tt) represents the tar-
get returns, αT is the target amplitude, τT denotes the (two-
way) target propagation delay, fd,T is the target Doppler fre-
quency, yI(t) = αIs(t − τI) exp(j2πfd,It) represents the in-
terference signal, αI is the interference amplitude, τI is the
(one-way) delay associated with the interference, fd,I denotes
the interference Doppler frequency, and w(t) stands for the
internal disturbance (e.g., receiver noise).

Typically, FMCW radar systems collect the received sig-
nal from N consecutive pulses within a coherent processing
interval (CPI) for target detection and parameter estimation.
To this end, the received signal is usually conjugately mixed
with the transmitted signal to produce a low-frequency beat
signal (i.e., dechirping). As a result, the dechirped version of
r(t) for the nth pulse is given by

rndc(t) =αT exp(j2π(fB,Tt+ nfd,TTchirp))

+ αI exp(j2π(fB,It+ nfd,ITchirp)) + wn(t), (3)

where fB,T = KτT + fd,T and fB,I = KτI + fd,I denote
the beat frequencies corresponding to the target and the inter-
ference signal, respectively, and to lighten the notations, we
absorb the constant phase terms into αT and αI, and usewn(t)
to denote the dechirped noise.

Denote the digital samples associated with rndc(t) as

r(m,n) = αT exp(j2π(f̂B,Tm+ f̂d,Tn))

+ αI exp(j2π(f̂B,Im+ f̂d,In)) + w(m,n), (4)

where we usem to denote the fast-time index, f̂B,T = fB,TTs
and f̂B,I = fB,ITs denote the normalized beat frequencies,
f̂d,T = fd,TTchirp and f̂d,I = fd,ITchirp denote the normalized
Doppler frequencies, Ts = 1/fs, fs stands for the sampling

frequency, and w(m,n) denotes the noise. Assume that M
samples are collected for each period. Then we can obtain the
range-Doppler image by applying the 2-D fast Fourier trans-
form (FFT) to r(m,n),m = 1, 2, · · · ,M, n = 1, 2, · · · , N :

RD(k, p) = αTDM (f̂B,T − k/M)DN (f̂B,T − k/M)

+ αIDM (f̂B,I − k/M)DN (f̂B,I − k/M)

+W (k, p), (5)

where Dn(x) = sin(nπx)/ sin(πx) denotes the Dirichlet
function, and W (k, p) represents the 2-D FFT of noise.

We can observe from (5) that the interference signal will
form a sharp peak in the range-Doppler image, even when the
two systems are not exactly identical. In particular, though
the interference might be attributable to the transmission from
the antenna sidelobe of one radar and reception by the antenna
sidelobe of the other, the potential interference level can still
be significantly higher than the target reflections, due to the
one-way propagation characteristic of the interference and the
direct (without reflection) blast from one’s transmission to the
other’s reception.

3. CODING SCHEMES FOR MUTUAL
INTERFERENCE MITIGATION
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Fig. 2. The proposed coding scheme.

In this section, we propose novel coding schemes to
reduce the mutual interferences between two identical (or
similar) radar systems. As shown in Fig. 2, the proposed
scheme utilize (periodic) slow-time coding for the N con-
secutive pulses. We denote the associated coding sequences
by x = [x1, x2, · · · , xN ]T and y = [y1, y2, · · · , yN ]T , re-
spectively. That is to say, in the nth pulse of a CPI, the first
radar system transmits xnu(t) and the second radar system
transmits ynu(t). Moreover, to keep constant transmit power
over the N pulses, we constrain the code sequences to be
unimodular, i.e., |xn| = |yn| = 1, n = 1, 2, · · · , N .
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With the coding scheme, the digital samples of the nth

dechirped signal is denoted by

rc(m,n) = αT exp(j2π(f̂B,Tm+ f̂d,Tn))

+ αIx
∗
ny(n+l)modN exp(j2π(f̂B,Im+ f̂d,In))

+ w(m,n). (6)

Therefore, the range-Doppler image formed with the pro-
posed scheme is given by

RDc(k, p) = αTDM (f̂B,T − k/M)DN (f̂B,T − k/M)

+ αIDM (f̂B,I − k/M)rlxy(f̂d,I − p/N)

+W (k, p), (7)

where rlxy(f) =
∑N
n=1 x

∗
ny(n+l)modN exp(j2πnf), which is

the periodic cross-ambiguity function of x and y.
To suppress the interference power in the range-Doppler

image, we aim at designing x and y to minimize rlxy(f) with-
in a range of interest for f . To this end, we propose two meth-
ods to design x and y in the following subsections.

3.1. Doppler-shifting Scheme

First, we propose a simple heuristic coding scheme to mitigate
the interference. The central idea of this scheme is to split the
target reflections and the interference signal in the Doppler
region. Specifically, the coding vectors x and y are given by

x = [1, 1, · · · , 1]T , (8)

y =

{
[1,−1, · · · ,−1, 1]T , if N is odd,
[1,−1, · · · , 1,−1]T , if N is even.

(9)

Note that for l = −N + 1, · · · , N − 1,

(y)(n+l)modN =

{
y, if l is even,
−y, if l is odd.

It is easy to verify that, with (8) and (9), rxy(f) =
DN (f + 1/2). Thus, with the proposed coding scheme, the
Doppler frequency of the interference signal is shifted to
a higher frequency area. As a result, it is possible to sep-
arate the target reflections and interference in the Doppler
dimension if |f | < 1/4.

3.2. Optimized Coding Scheme

In this subsection, we seek to optimize x and y such that
the corresponding |rxy(f)| has small values in a desired area.
Given that the two radar systems usually have unsynchronized
transmissions, the desired area should include all possible de-
lays. Thus, we consider the following optimization problem:

min
x,y

∑N−1

l=−N+1

∑P

p=−P
|rlp|2

s.t. |xn| = 1, |yn| = 1, n = 1, 2, · · · , N, (10)

where rlp =
∑N
n=1 x

∗
ny(n+l)modNe

−j2πnp/Nf denotes the
discrete periodic cross-ambiguity function of x and y (for
a related problem of synthesizing aperiodic cross-ambiguity
functions and periodic ambiguity functions, we refer to [11,
12].), N < Nf , 0 < P < Nf , Nf denotes the overall number
of discrete (Doppler) frequencies, and the value of P is close-
ly related to the maximum Doppler frequency of interest.

Note that rlp = xHDiag(fp)Cly, where Cl = CT
−l =[

0 IN−l
Il 0

]
is a circular shift matrix, Diag(fp) is a diagonal

matrix with the diagonal elements fp, and the nth element
of fp is given by e−j2πnp/Nf . Thus, we can reformulate the
optimization problem in (10) as follows:

min
x,y

N−1∑
l=−N+1

P∑
p=−P

|xHDiag(fp)Cly|2

s.t. |xn| = 1, |yn| = 1, n = 1, 2, · · · , N, (11)

It is easy to verify that the optimization problem in (11)
is non-convex and difficult to solve. Herein, we propose to
tackle the problem in a cyclic manner. Specifically, in the
ith iteration of the cyclic optimization, we first optimize x
for fixed y(i−1) and then optimize y for fixed x(i). Next we
present the solution to the two subproblems involved in each
iteration. For notational simplicity, we omit the superscripts
of y(i−1) and x(i) if this leads to no confusion.
• Optimization of x for fixed y:
The associated optimization problem can be recast as

min
x

xHByx, s.t. |xn| = 1, n = 1, 2, · · · , N, (12)

where

By =

N−1∑
l=−N+1

P∑
p=−P

Diag(fp)Clyy
HCH

l DiagH(fp). (13)

The problem in (12) is called a (non-convex) unimodular
quadratic programming (UQP) problem. In particular, it can
be tackled with the power-method-like iterations proposed in
[13, 14] (see also in [15, 16] for the application of power-
method-like iterations in radar code optimization.). Specifi-
cally, let µy be a positive constant to ensure Dy = µyIN −
By � 0 (i.e., positive definite). It is easy to verify that the
problem in (12) can be equivalently written as:

max
x

xHDyx, s.t. |xn| = 1, n = 1, 2, · · · , N. (14)

In the kth (inner) iteration, we update x as follows:

x(i,k) = exp(j arg(Dyx
(i,k−1))). (15)

• Optimization of y for fixed x:
The optimization of y for fixed x is formulated as follows:

min
y

yHBxy, s.t. |yn| = 1, n = 1, 2, · · · , N, (16)
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where

Bx =

N−1∑
l=−N+1

P∑
p=−P

CH
l DiagH(fp)xx

HDiag(fp)Cl. (17)

Similarly, we can tackle the optimization problem in (16)
iteratively. Specifically, the solution in the kth (inner) itera-
tion is given by

y(i,k) = exp(j arg(Dxy
(i,k−1))), (18)

where Dx = µxI−Bx and µx is a positive constant to ensure
Dx � 0.

4. NUMERICAL EXAMPLES

Consider two identical FMCW radar systems with the same
carrier frequency of fc = 24 GHz. The bandwidth of the chirp
signal is B = 150 MHz. The sweep time is Tchirp = 50 µs.
The number of periods within a CPI is N = 256.
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Fig. 3. Discrete periodic cross-ambiguity functions. (a)
Doppler-shifting. (b) The optimized coding scheme. (c) The
zero-delay cut. N = 256. P = 200. Nf = 512.

Fig. 3(a) and Fig. 3(b) show the discrete periodic cross-
ambiguity functions associated with the Doppler-shifting, and
the optimized codes, respectively, where P = 200 and Nf =
512 (which implies that the maximum Doppler frequency of
interest should be lower than 3906.25 Hz, corresponding to
the maximum relative radial velocity to be 87.9 km/h), and we
initialize our algorithm with randomly generated codes (for x
and y, respectively,) in the optimized coding scheme. Fig.
3(c) compares their discrete periodic cross-ambiguity func-
tions at the zero-delay cut. We can observe that, both cod-
ing schemes achieve very low sidelobes in the desired area.
Thus, they can be used to effectively suppress the interfer-
ence. Moreover, the peak side lobe (PSL) corresponding to

the optimized codes is approximately 3.55 dB lower than that
of the Doppler-shifting, within the desired range of Doppler
frequency of interest (Interestingly, if we fix y = 1N and we
can only optimize x, we obtain similar results, which corre-
sponds to a more practical coding method, since no coordina-
tion between the two radar systems is needed.)
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Fig. 4. The range-Doppler image with and without slow-time
coding. (a) Without coding. (b) Doppler-shifting code. (c)
The optimized coding scheme.

Next we apply the coding schemes to mitigate the mutual
interference for two identical automotive radar systems oper-
ating in a typical scenario: the range of target and interference
are at 50 m and 140 m, respectively. The speeds associated
with them are 36.432 km/h and 84.42 km/h. The signal-to-
noise ratios (SNR) are 30 dB and 60 dB, respectively. The
sampling frequency is fs = 4 MHz. M = 100 samples are
collected for each period. Fig. 4(a) shows the range-Doppler
image of the scenario without slow-time coding. We can ob-
serve that, the power of the interference is much stronger than
that of the target such that false alarm happens. When our
slow-time coding schemes are applied, the interference pow-
er level is significantly reduced and the target can be easily
detected without suffering from false alarm problems.

5. CONCLUSIONS

We have proposed two slow-time coding schemes to mitigate
the mutual interference in two identical or similar FMCW
radar systems. We have presented efficient methods to con-
struct the codes. We have shown that both coding schemes
can be used to reduce the interference power level significant-
ly. We have demonstrated that the second coding scheme, ob-
tained via a cyclic optimization method, can achieve a lower
PSL than the first more intuitive coding scheme.

6511



6. REFERENCES

[1] Martin Schneider, “Automotive radar-status and trends,”
in German microwave conference, 2005, pp. 144–147.

[2] Hermann Rohling, “Milestones in radar and the success
story of automotive radar systems,” in 11th Internation-
al Radar Symposium (IRS). IEEE, 2010, pp. 1–6.

[3] Juergen Dickmann, Jens Klappstein, Markus Hahn, Nil-
s Appenrodt, Hans-Ludwig Bloecher, Klaudius Werber,
and Alfons Sailer, “Automotive radar the key technolo-
gy for autonomous driving: From detection and ranging
to environmental understanding,” in IEEE Radar Con-
ference (RadarConf). IEEE, 2016, pp. 1–6.

[4] Fulvio Gini, Antonio De Maio, and Lee Patton, Wave-
form design and diversity for advanced radar system-
s, Institution of engineering and technology, London,
2012.

[5] Jaime Lien, Nicholas Gillian, M Emre Karagozler,
Patrick Amihood, Carsten Schwesig, Erik Olson, Hakim
Raja, and Ivan Poupyrev, “Soli: Ubiquitous gesture
sensing with millimeter wave radar,” ACM Transactions
on Graphics (TOG), vol. 35, no. 4, pp. 142, 2016.

[6] Saiwen Wang, Jie Song, Jaime Lien, Ivan Poupyrev,
and Otmar Hilliges, “Interacting with soli: Exploring
fine-grained dynamic gesture recognition in the radio-
frequency spectrum,” in Proceedings of the 29th Annual
Symposium on User Interface Software and Technology.
ACM, 2016, pp. 851–860.

[7] Graham M. Brooker, “Mutual interference of
millimeter-wave radar systems,” IEEE Transactions on
Electromagnetic Compatibility, vol. 49, no. 1, pp. 170–
181, 2007.

[8] Markus Goppelt, H-L Blöcher, and Wolfgang Menzel,
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