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ABSTRACT

Multi-spectral (MS) image super-resolution aims to reconstruct
super-resolved multi-channel images from their low-resolution im-
ages by regularizing the image to be reconstructed. Recently data-
driven regularization techniques based on sparse modeling and deep
learning have achieved substantial improvements in single image
reconstruction problems. Inspired by these data-driven methods, we
develop a novel coupled analysis and synthesis dictionary (CASD)
model for MS image super-resolution, by exploiting a regularizer
that operates within, as well as across, multiple spectral chan-
nels using convolutional dictionaries. To learn the CASD model
parameters, we propose a deep dictionary learning framework,
named DeepCASD, by unfolding and training an end-to-end CASD
based reconstruction network over an image data set. Experimen-
tal results show that the DeepCASD framework exhibits improved
performance on multi-spectral image super-resolution compared to
state-of-the-art learning based super-resolution algorithms.

Index Terms— Super-resolution, convolutional dictionary, deep
learning, multi-spectral imaging, algorithm unfolding.

1. INTRODUCTION

Multi-spectral (MS) imaging systems measure the response from
an area of interest over a wide range of frequency bands including
visible optical RGB, infra-red, and short-wave infra-red bands [1].
These multi-band spectra provide rich information for detecting and
distinguishing materials, especially for those materials with visu-
ally similar colors. Furthermore, the higher atmospheric transmis-
sion property of infra-red bands versus optical bands makes the MS
imaging more beneficial in hazy or cloudy weather conditions when
optical imaging systems do not work well. In recent decades, multi-
spectral or even hyper-spectral imaging techniques have been widely
used in remote sensing applications ranging from astronomy [2],
agriculture [3], and geoscience [4].

However, MS imaging systems encounter a trade-off between
spatial and spectral resolution in the hardware implementation [5,6].
While high spatial resolution of MS images is desirable for many
applications, resolution is typically constrained by the limitations
on the size, weight, and power of the sensors mounted on-board of
airplanes or spacecrafts [4]. To overcome these limitations, image
super-resolution (SR) methods have been developed that mitigate
hardware shortfall using computational imaging techniques [6–9].

Image SR is generally an ill-posed inverse problem. To solve
this problem, a regularizer on the underlying high-resolution image
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Fig. 1. DeepCASD for Multi-spectral Image Super-Resolution.
is required, and consequently plays an important role in the final
reconstruction. Pan-sharpening methods, for example, are classi-
cal image SR methods where the spatial information of the known
panchromatic images is fused with the spectral information of color
or MS images, to generate high spatial resolution and high spec-
tral resolution images [10]. This fusion process can be improved
by low-rank modeling [11, 12], or sparse regularization via dictio-
nary learning on coupled low-resolution and high-resolution image
patches [13, 14]. Since the spectral band of panchromatic images
does not overlap with infrared bands, pan-sharpening methods in-
evitably introduce spectral distortion for MS image SR.

Recent advances in data-driven methods have led to substan-
tial improvements in many imaging tasks, including image SR [7–
9, 15–17]. Meanwhile, convolutional dictionaries also have shown
to be more effective than spatial patch dictionaries by enforcing the
neighboring patch dependency [18–20]. However, to the best of our
knowledge, such methods have not been exploited in multi-spectral
image fusion.

In this paper, we introduce a data-driven Coupled Analysis and
Synthesis Dictionary (CASD) model that relates the multi-channel
low resolution (LR) measurements with the high resolution (HR)
images through shared feature maps and coupled convolutional dic-
tionaries. To learn the CASD model, we propose a deep-learning
framework, named DeepCASD, which leverages training data more
effectively with an end-to-end approach. Fig. 1 shows the MS image
SR process using DeepCASD. Compared to the existing solutions,
our proposed method exhibits several advantages. First, it allows
couplings within and across multiple channels with a shared fea-
ture map. Second, it provides an end-to-end learning framework
for image SR. Third, it provides greater flexibility in terms of the
total number of spectral channels and image resolution compared
to traditional pan-sharpening and image SR methods. We evaluate
the proposed DeepCASD framework on synthesized MS images us-
ing AVIRIS [1] hyper-spectral images, and compare the results with
competing methods quantitatively and perceptually.
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2. BACKGROUND AND RELATED WORK

In image super-resolution, an HR image x ∈ Rp is typically recon-
structed by solving the following regularized imaging problem

(P0) x̂ = arg min
x

1

2
‖y −Ax‖22 +R(x),

where A is the sensing matrix. Typically A involves a system-
dependent low-pass filtering process and a down-sampling process
when y is an LR image of size smaller than that of x. Alternatively,
if we up-scale y to the same size of x using standard techniques like
bicubic interpolation, the sensing matrix A can be approximated as
the p × p identity matrix [7–9]. In the remainder of this paper, we
take the latter option by assuming that bicubic interpolation has al-
ready been applied to the low resolution images such that y ∈ Rp.

As SR is ill-posed, an effective image regularizer R(x) is the
key to successful reconstruction. Previous SR methods imposed var-
ious forms ofR(x), exploiting image properties such as total varia-
tion [21] or sparsity [22]. With the introduction of dictionary learn-
ing [13, 18], data-driven methods have attracted great attention in
image SR [7–9, 14]. Furthermore, recent advances in unfolded dic-
tionary learning [20,23,24] demonstrated promising performance in
single image super-resolution. In particular, the Shrinkage Field (SF)
network [20] provides state-of-the-art imaging performance and ef-
ficient training on a single channel image x by solving

(P1) min
x,u

1

2
‖y − x‖22 +

λ

2
‖u−W x‖22 + Φθ(u),

where W =
[
WT

1 |...|WT
M

]T is a convolutional analysis dictionary
with M convolutional filters, such that

Wx ,
[
(w1 ∗ x)T |...|(wM ∗ x)T

]T
,

where ∗ denotes the convolution operator, and each wm,m ∈
{1, . . . ,M}, is a filter in Rq . Here u ∈ RMp is the feature map,
with Φθ(u) being its regularizer. A parametric function Φθ(·) is
used, which leads to a shrinkage function composed of a linear
combination of Gaussian radial basis functions (RBF) [20, 23]. The
shrinkage parameter set θ and the convolutional dictionary W are
learned using a training dataset by maximizing the reconstruction
Peak Signal-to-Noise Ratio (PSNR).

3. PROPOSED METHOD

3.1. Proposed CASD model

For MS image SR, we introduce an end-to-end fusion network,
named DeepCASD, with an overview chart shown in Fig. 1. The
structure of each DeepCASD block, as illustrated in Fig. 2, is
composed of both single-channel and multi-channel SR modules,
to fully operate within and across different image channels. We
adopt the SF network [20] as our single-channel module due to its
demonstrated performance and efficiency. Given L spectral chan-
nels, the multi-channel CASD model assumes that each HR image
xl, for l ∈ {1, .., L}, and all of the multi-channel LR measurements
y =

[
yT1 | ... |yTL

]T ∈ RLp are approximately sparse under con-
volutional synthesis and analysis dictionaries, respectively, with a
shared coefficient map u ∈ RMp.

We super-resolve the HR image xl in each channel, by solving
the following CASD imaging problem
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Fig. 2. The outline of the DeepCASD for MS image SR.

(P2) min
xl,ul

1

2
‖yl − xl‖22 +

λ2

2
‖Bly − ul‖22

+
λ1

2
‖xl −Dlul‖22 + Φθl(ul)

where Dl =
[
Dl,1| ... |Dl,M

]
∈ Rp×Mp is the convolutional syn-

thesis dictionary [18,19,25] for xl, while the convolutional analysis
dictionary [20, 24, 26] Bl for y in (P2) is defined as

Bl =

Wl
1,1 · · · Wl

1,L

...
. . .

...
Wl

M,1 · · · Wl
M,L

 ∈ RMp×Lp. (1)

In (P2), the terms ‖Bly − ul‖22 and ‖xl −Dlul‖22 denote the mod-
eling errors for xl under the analysis dictionary, and the synthesis
dictionary, respectively. Comparing to the single analysis model
used in (P1), the CASD model in (P2) further exploits the correla-
tion between the multi-channel LR measurements and the HR image
using analysis dictionaries, rather than only the HR image structure.

To learn the CASD, one can directly solve (P2) using alternat-
ing minimization, which has been widely used in previous work on
coupled dictionary learning [7,9]. Recent works on deep learning by
unfolding the synthesis sparse coding problem [27,28] demonstrated
superior performance in many imaging applications, comparing to
conventional iterative methods. Inspired by this work, instead of di-
rectly optimizing the loss function in (P2), we propose an end-to-end
learning framework, namely DeepCASD, by unfolding the CASD
learning for image fusion.

3.2. End-to-end DeepCASD learning

The multi-channel SR module in the proposed DeepCASD con-
tains K CASD stages. In each stage, the trainable parameter set is{
Bl, θl, Dl

}
, which is used to generate the feature map ul, and

thus super-resolve each yl. Given ul and the dictionary Dl, the
solution x̂l to (P2) is given by

x̂l = λ1 / (1 + λ1) Dlul + 1 / (1 + λ1) yl

= D̃l ul + λ′yl (2)

where λ′ = 1/(1+λ1), and λ1/(1+λ1) is absorbed into D̃l during
the learning. To obtain the feature map ul, directly solving (P2)
involves gradient calculation using the trainable Dl and the output
x̂l in the end-to-end training, which leads to the recurrent neural
network structure. We restrict ourselves to construct feed-forward
DeepCASD network for efficient implementation. Thus each ul is
estimated by solving the following analysis (i.e. transform) model
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sparse coding problem

ûl = arg min
ul

‖ul −Bly‖22 + Φθl(ul)

= ηθl (Bly) ∀l = 1, ..., L (3)

where ηθl(·) denotes the corresponding shrinkage function of the
feature regularizer Φθl(·). For example, when Φθ(u) := θ ‖u‖0
with the `0 “norm” that counts the number of non-zero elements of
u, the corresponding ηθ(·) becomes the hard-thresholding function
of u, with threshold value θ. Here we use the trainable Gaussian
RBF to be the shrinkage function ηθl(·), which shows good general-
ization of non-linear shrinkage functions in the SF network [20].

To analyze the cascaded structure in the proposed DeepCASD,
we denote the l-channel super-resolved image as x̂kl at the k-th stage,
k = 1, ...,K. The trainable set at the k-th stage for the x̂kl recon-
struction is denoted as

{
Bk
l , θ

k
l , Dk

l

}
. Fig. 2 illustrates how the K

cascaded CASD stages construct the multi-channel SR module: the
k-th stage multi-channel output x̂k ∈ RLp is passed to the next stage
as its LR input. It can be expressed as a function of the dictionaries
Dk
l and Bk

l , the shrinkage function parameter set θkl , the previous
stage output x̂k−1 = {x̂lk−1}Ll=1, and l-th channel LR image yl
recursively as follow

x̂kl = f (Dk
l , Bk

l , θ
k
l , x̂k−1, yl)

= Dk
l ηθk

l
( Bk

l x̂k−1 ) + λ′yl ∀ l, k (4)

where x̂0 denotes the input at the first stage. Figure 3 illustrates
the layer-level structure of the k-th stage CASD network for x̂kl re-
construction. Note that Wk

m,: denotes the m-th row of Bk
l , which

fuses the multi-channel input x̂k−1 before applying the shrinkage,
i.e., vkm = Wk

m,: x̂
k−1 ∈ Rp.

We train the DeepCASD over a training set which contains N
pairs of multi-channel HR images X =

[
x(1)| ... |x(N)

]
and their

interpolated LR measurements Y =
[
y(1)| ... |y(N)

]
. The negative

average reconstruction PSNR over all images and channels is em-
ployed as the cost function L at the final output:

L(X, X̂K) , −PSNR

= − 20

NL

N∑
i=1

L∑
l=1

log10

B
√
P∥∥x(i),l − x̂K(i),l

∥∥
2

. (5)

Here B is the maximum image pixel value (e.g., B = 255 for 8-bit
image), and X̂K denotes the super-resolved multi-channel images
using DeepCASD. Let the set of all trainable parameters in the K-

stage DeepCASD be Θ =
{

Θk
}K
k=1

,
{{

Bk
l , θ

k
l , Dk

l

}L
l=1

}K
k=1

.
The joint DeepCASD training problem is formulated as

(P3) Θ̂ = arg min
Θ

L (X, X̂K (Θ,Y))

Problem (P3) can be solved using error back-propagation. Alterna-
tively, as each DeepCASD stage itself is a stand-alone image fusion
network [20], each Θk can be trained separately by solving the fol-
lowing stage-wise DeepCASD training problem

(P4) Θ̂k
stg = arg min

Θk

L (X, X̂k (Θk, X̂k−1,Y)) ∀k.

In practice, as (P3) is highly non-convex, it is more efficient to use
the stage-wise

{
Θk

stg
}K
k=1

learned using (P4) as the initialization in
the joint training for (P3). Once the DeepCASD network training is
completed, the multi-channel SR is conducted by applying (4) recur-
sively with the trained Θ̂.

ො𝑥1
𝑘−1

…

ො𝑥𝐿
𝑘−1

ො𝑥𝑙
𝑘

𝑦𝑙

𝑊2,∶
𝑘 Φ𝜃2

𝑘

ො𝑢2
𝑘

𝐷2
𝑘

…..
𝑣2
𝑘

𝑊1,∶
𝑘

Φ𝜃1
𝑘

ො𝑢1
𝑘

𝐷1
𝑘

𝑣1
𝑘

𝑊𝑀,∶
𝑘 Φ𝜃𝑀

𝑘

ො𝑢𝑀
𝑘

𝐷𝑀
𝑘

𝑣𝑀
𝑘

Analysis
Layer

Synthesis
Layer

…..

Shrinkage
Layer

….. 𝑙-channel
SR 

Output

𝑙-channel
LR image

Inputs

Input
Dimension

Output
Dimension

Fig. 3. The layer-level structure of the k-th stage CASD for super-
resolving the l-th channel x̂kl , and the input / output data dimensions.

Table 1. PSNR values (in dB) for MS image ×2 SR, averaged
over 16 channels, using bicubic interpolation, dictionary learning
(DL) [9], Shrinkage Field (SF) [20], and the proposed DeepCASD
method. The best PSNR value in each row is marked in bold.

MS Images Bicubic DL [9] SF [20] DeepCASD

Moffett 32.27 33.81 34.25 34.57

Cambria Fire 35.49 36.55 37.09 37.22

Cuprite 32.36 33.60 34.49 34.68

Los Angeles 27.97 29.62 30.34 30.46

Average 32.02 33.41 34.04 34.23

4. NUMERICAL EXPERIMENTS

4.1. Experimental Setup

We evaluate and compare the performance of the proposed Deep-
CASD on the SR problem over remote sensing MS images. We syn-
thesize MS images of 17 discrete channels, including panchromatic,
RGB, infra-red, and short-wave infra-red channels, using AVIRIS
hyper-spectral image data sets [1]. Each high-resolution MS chan-
nel is generated as a weighted sum of multiple hyper-spectral chan-
nels covering adjacent frequency bands. The corresponding low-
resolution MS channels are then generated by down-sampling the
high-resolution MS image through a low-pass filter. The parameters
of the DeepCASD network are first trained using a set of MS images.
The training set contains 138 pairs of high-resolution MS images and
their corresponding low-resolution measurements, across 16 chan-
nels. Each HR image in a single channel is of size 256 × 256. The
LR images are first up-scaled to the HR image size by bicubic inter-
polation [7–9]. As the HR panchromatic image is typically available
in remote sensing applications, we pass it through a skip link directly
to each multi-channel SR stage (i.e., there are L = 17 input chan-
nels and L = 16 output channels in each CASD stage) in training
and testing (see Fig. 2).

We use 3 single-channel SR stages, followed by 1 multi-channel
SR stage in the DeepCASD network, and perform a for 2×-SR ex-
periment. We set the number of feature channels M = 8, and the
size of convolutional filters to be 3 × 3. We observed improved
SR performance using DeepCASD with more SR stages. However,
more training data are required for training deeper networks, other-
wise DeepCASD may suffer from overfitting which causes degraded
SR quality. For the training process, we observe that joint training
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Cuprite (RGB) bicubic (32.53 dB) DL (34.81 dB) SF (34.96 dB) DeepCASD (35.27 dB)

Cuprite (Infra-red) bicubic (30.25 dB) DL (32.08 dB) SF (32.19 dB) DeepCASD (32.29 dB)

Moffett (RGB) bicubic (27.86 dB) DL (29.71 dB) SF (29.80 dB) DeepCASD (30.09 dB)

Moffett (Infra-red) bicubic (36.51 dB) DL (38.44 dB) SF (38.58 dB) DeepCASD (38.93 dB)

Fig. 4. The zoom-in of example regions, and their ×2 SR results of RGB and Infra-red channels of MS images, using different SR methods.

may achieve slightly better performance in SR compared to stage-
wise training, but is more time-consuming. This agrees with the ob-
servations reported in [20]. We choose stage-wise training for its ef-
ficiency and resilience to degradation in SR performance, compared
to joint training. Once the training is complete, we super-resolve the
MS images of other regions in the AVIRIS dataset, which contain
diverse geometric properties. We use the reconstructed image PSNR
as the quality metric.

4.2. Results

We compare the SR performance of MS images using the proposed
method, to several other popular SR methods including up-scaling
by bicubic interpolation, the state-of-the-art dictionary learning (DL)
based SR [9], and the deep SF network [20]. For fair comparison,
we use 3-stage SF network, the same number of stages used in the
single-channel module of our DeepCASD framework.

Figure 4 shows example SR results of the true color (RGB) and
false color of three infra-red channels of MS images. Comparing to
the results obtained by DL [9] and SF [20] methods, DeepCASD is
capable of discovering more details, especially by better resolving

the important local regions such as roads and buildings.
To analyze the performance of MS image SR results quantita-

tively, we list the reconstructed MS image PSNRs in Table 1 for
four different testing areas in California. Each PSNR value is aver-
aged over 16 MS channels, obtained using the aforementioned meth-
ods. It is clear that the proposed DeepCASD scheme outperforms all
competing methods for all testing MS images. The average PSNR
improvement of DeepCASD results over bicubic interpolation, dic-
tionary learning (DL) based SR [9], and the SF network [20] are 2.2
dB, 0.8 dB, and 0.2 dB, respectively.

5. CONCLUSION
We propose a novel data-driven method using deep coupled analysis
and synthesis dictionary (DeepCASD) framework for multi-spectral
image super-resolution. Our method allows couplings of convolu-
tional dictionaries within and across multiple image channels while
leveraging high-dimensional data in an effective way within an end-
to-end training process. Experiments on MS image super-resolution
using synthesized data show that the proposed DeepCASD frame-
work consistently outperforms competing methods.
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