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ABSTRACT
Recently, coded masks have been used to demonstrate a thin
form-factor lensless camera, FlatCam, in which a mask is
placed immediately on top of a bare image sensor. In this
paper, we present an imaging model and algorithm to jointly
estimate depth and intensity information in the scene from a
single or multiple FlatCams. We use a light field represen-
tation to model the mapping of 3D scene onto the sensor in
which light rays from different depths yield different modu-
lation patterns. We present a greedy depth pursuit algorithm
to search the 3D volume and estimate the depth and inten-
sity of each pixel within the camera field-of-view. We present
simulation results to analyze the performance of our proposed
model and algorithm with different FlatCam settings.

Index Terms— computational photography, depth estima-
tion, coded aperture, greedy algorithms

1. INTRODUCTION

Lens-based cameras are standard vision sensors in system that
records visual information. However, lens-based cameras are
bulky, heavy, and rigid—partly because of the size and mate-
rial of a lens. The shape of a lens-based camera is also fixed in
a cube-like form because of the physical constraints on plac-
ing the lens at a certain distance from the sensor. A lensless
camera can potentially be very thin and lightweight, can oper-
ate over a large spectral range, can provide an extremely wide
field of view, and can have curved or flexible shape.

Recently, a new lensless imaging system, called FlatCam,
was proposed in [1]. FlatCam consists of a coded binary mask
placed at a small distance from a bare sensor. FlatCam can be
viewed as an example of a coded aperture system in which the
mask was placed extremely close to the sensor [2]. The mask
pattern was selected in a way that the image formation model
takes a linear separable form. Image reconstruction from the
sensor measurements requires solving a linear inverse prob-
lem.

One limitation of the imaging model in [1] is that it assumes
a 2D scene that consists of a single plane at a fixed distance
from the camera. In this paper, we present a new imaging
model for FlatCam in which the scene consists of multiple
planes at different (unknown) depths. We use a light field
representation in which light rays from different depths yield
different modulation patterns. We use the lightfield represen-

Fig. 1: 3D imaging with a mask-based lensless camera that consists of a bare
sensor with a fixed, binary mask on top of it. Every light source from within
the camera field-of-view casts a shadow of the mask on sensor, resulting in a
multiplexed image on the sensor. The shadow of any light source depends on
its 3D location with respect to the mask-sensor assembly. A depth-selective
pursuit algorithm reconstructs the 3D image of the scene.

tation to analyze the sensitivity of FlatCam to the sampling
pattern and depth mismatch. We present a greedy algorithm
that jointly estimates the depths and intensity of each pixel.
We present simulation results to demonstrate the performance
of our algorithm under different settings.

2. BACKGROUND AND RELATED WORK

A pinhole camera is a classical example of a lensless camera
in which an opaque mask with a single pinhole is placed in
front of a light-sensitive surface. A pinhole camera can po-
tentially take an arbitrary shape. However, a major drawback
of a pinhole camera is that it only allows a tiny fraction of the
ambient light to pass through the single pinhole; therefore, it
typically requires very long exposure times. Coded aperture
imaging systems extend the idea of a pinhole camera by us-
ing a mask with multiple pinholes [4, 2, 5, 6, 7, 8]. However,
the image formed on the sensor is a linear superposition of
images from multiple pinholes. We need to solve an inverse
problem to recover the underlying scene image from sensor
measurements. The primary purpose of the coded aperture is
to increase the amount of light recorded at the sensor.

A coded aperture system offers another advantage by virtue
of encoding light from different directions and depths differ-
ently. Note that a bare sensor can provide the intensity of a
light source but not its spatial location. A mask in front of the
sensor encodes directional information of the source in the
sensor measurements. In a coded aperture system, every light
source in the scene casts a unique shadow of the mask onto the
sensor. Therefore, sensor measurements encode information
about locations and intensities of all the light sources in the
scene. Consider a single light source with a dark background;
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Fig. 2: Examples of imaging with pinhole and coded mask-based cameras.
Light rays from all direction hit the mask; rays can only pass through trans-
parent regions (holes). (a,b) Pinhole cameras preserve angular information
but lose depth information as points along the same angle yield identical im-
ages, irrespective of their depths. (c,d) Coded aperture-based cameras record
coded combination of light from different directions and better preserve depth
information. We are dealing with purely geometrical optics (i.e., no diffrac-
tive effects are assumed in that framework).

the image formed on the sensor will be a shadow of the mask.
If we change the angle of the light source, the mask shadow
on the sensor will shift. Furthermore, if we change the depth
of the light source, the size of the shadow will change (see
Figure 2). Thus, we can represent the relationship between all
the points in the scene and the sensor measurements as a lin-
ear system, which depends on the pattern and the placement
of the mask. We can solve this system using an appropriate
computational algorithm to recover the image of the scene.

The depth-dependent imaging capability in coded aperture
systems is known since the pioneering work in this domain [3,
2]. The following excerpt in [2] summarizes it well: ”One
can reconstruct a particular depth in the object by treating the
picture as if it was formed by an aperture scaled to the size
of the shadow produced by the depth under consideration.”
However, the classical methods assume that the scene consists
of a single plane at known depth. In this paper, we assume that
the depth scene consists of multiple depth planes and the true
depth map is unknown at the time of reconstruction.

Coded-aperture cameras have traditionally been used for
imaging wavelengths beyond the visible spectrum (e.g., X-ray
and gamma-ray imaging), for which lenses or mirrors are ex-
pensive or infeasible [4, 2, 5, 6, 7, 8]. Mask-based lensless de-
signs have been proposed for flexible field-of-view selection
in [9], compressive single-pixel imaging using a transmissive
LCD panel [10], and separable coded masks [11]. In recent
years, coded masks and light modulators have been added to
lens-based cameras in different configurations to build novel
imaging devices that can capture image and depth [12] or 4D
light field [13, 14] from a single coded image.

3. FLATCAM: REPLACING LENSES WITH CODED
MASKS AND COMPUTATIONS

FlatCam is a coded aperture system that consists of a bare,
planar sensor and a binary mask [1]. Coded-aperture cameras
have traditionally been used for imaging wavelengths beyond
the visible spectrum (e.g., X-ray and gamma-ray imaging),
for which lenses or mirrors are expensive or infeasible [4, 2,

7]. A bare sensor can provide information about the intensity
of a light source but not its spatial location. By adding a mask
in front of the sensor, we can encode directional information
of the source in the sensor measurements.

The imaging model in [1] assumes that the scene consists
of a single plane parallel to mask-sensor planes. Let us con-
sider a 1D imaging system, shown in Fig. 3a, in which a 1D
mask is placed at a distance d in front of a 1D sensor array
with M pixels, and the scene consists of a single plane at dis-
tance D from the sensor with N scene pixels. Let us denote
a scene pixel as l(θ), where θ is uniformly distributed along
an angular interval [θ−, θ+] with respect to the center of the
sensor. We can represent the measurement at sensor pixel s
as

I(s) =

θ+∑
θ=θ−

ϕ(s, θ)l(θ), (1)

where ϕ(θ, s) denotes the modulation coefficient of the mask
for a light ray between scene pixel l(θ) and the sensor pixel
at location s. We can write (1) in a compact form as

I = Φl, (2)

where Φ denotes anM×N system matrix that mapsN scene
pixels to M sensor pixels. This is a linear system that we can
solve using an appropriate computational algorithm to recover
the image of the scene (more details can be found in [1]).

4. DEPTH ESTIMATION USING FLATCAMS

4.1. Imaging model

The model in (1) assumes a 2D scene that consists of a single
plane at some fixed depth. The system matrix Φ encodes map-
ping of scene points from that plane to the sensor pixels. In
our new model, we consider a 3D scene that consists of mul-
tiple planes, each of which contribute to the sensor measure-
ments. Without loss of generality, we consider a 1D imaging
system in Fig. 3a and assume that the sensor plane is cen-
tered at the origin and the mask plane is placed in front of
it at distance d. The scene consists of K planes at depths
[D1, . . . , DK ] and the scene pixels are distributed uniformly
along angles in interval [θ−, θ+], as before. We can describe
the measurement at sensor pixel s as

I(s) =

DK∑
D=D1

θ+∑
θ=θ−

ϕ(s, θ,D)l(θ,D), (3)

where ϕ(s, θ,D) denotes modulation coefficient of the mask
for a light ray between light source l(θ,D) and the sensor
pixel at location s. We can write (3) in a compact form as

I =

DK∑
D=D1

ΦDlD, (4)
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(a) Imaging system geometry.
Mask and sensor planes are sep-
arated by distance d. Each point
in the scene (at any angle θ and
distance D) contributes to the
sensor measurements. Our goal
is to jointly estimate depth and
intensity of each pixel within the
field-of-view.

(b) Lightfield representation of the
system. Angle and depth of a scene
point encode intercept and depth of
the respective line in lightfield. Hor-
izontal lines denote mask patten.
Lightfield is first modulated by the
mask pattern and then integrated at
the sensor plane.

Fig. 3: Geometry of the imaging system in 1D and the corresponding light
field representation.

where each lD denotes intensity of N pixels in a plane at
depthD and ΦD is anM×N matrix that represents the map-
ping of lD onto the sensor.

For the case of 3D imaging, let us represent the light dis-
tribution as L(θx, θy, z) for depth z > d. Measurements for
a sensor pixel located at (su, sv) can then be described using
the following system of linear equations:

I(su, sv) =
∑

θx,θy,z

L(θx, θy, z)×

mask
[(

1− d

z

)
su + d tan θx,

(
1− d

z

)
sv + d tan θy

]
,

(5)

where mask[u, v] denotes the transparency value of the mask
at location (u, v) within the mask plane. If the mask pattern is
symmetric and separable in (θx, θy) space, then we can write
the 2D measurements in (5) as

I =

DK∑
D=D1

ΦDLDΦTD, (6)

where ΦD is an M ×N matrix and LD denotes N ×N light
distribution corresponding to plane at depth D.

Furthermore, we can include multiple cameras at different
locations and orientations with respect to a reference frame.
Such a system will provide us multiple sensor measurements
of the form

Ic =

DK∑
D=D1

ΦD,cLDΦTD,c, (7)

where Ic denotes sensor measurements at camera c and ΦD,c
is matrix that represents mapping of LD onto camera c.

4.2. Joint image and depth reconstruction

We estimate the depth and intensity of each pixel within
the field-of-view of our cameras using a greedy depth-

selective algorithm, in which we assume a sparse prior that
L(θx, θy, D) has nonzero value only for one depth. Our
proposed algorithm is inspired by structured sparse recovery
algorithms in model-based compressive sensing [15].

To simplify the presentation, let us represent (6) or (7) as
the following general linear system:

I = A(L), (8)

where L is an N × N × K light distribution with N × N
spatial resolution and K depth planes, A denotes the linear
measurement operator in (6) or (7), and I denotes the sensor
measurements.

Suppose our current estimate of L is L̃ with exactly one
depth assigned to each pixel. Let us denote the initial depth
map as Ω. In our experiments, we initialize the depth es-
timate with the farthest plane in the scene. Our proposed
depth-selective pursuit algorithm is an iterative method that
performs the following three main steps at every iteration:
Compute proxy depth estimate. We first select new can-
didate depth for each pixel by picking the maximum magni-
tude in the following proxy map corresponding to each pixel:
P = AT [I − A(L̃)]. Let us denote the new depth map as Ω̃.
Merge depths and estimate image. We first merge the orig-
inal depth estimate with the proxy depth estimate. Let us de-
note the merged depth support as T = {Ω ∪ Ω̃}. Then we
solve a least-squares problem over the merged depth support
as L̂ = arg minL ‖IT −ATL‖22.
Prune depth and threshold image. We prune the depth es-
timate at every spatial location by picking the depth corre-
sponding to higher pixel intensity in L̂. Finally, we threshold
L̂ to L̃ that has only one nonzero depth per spatial location.

4.3. Depth sampling and sensitivity

For a single camera, sensor measurements for a single point
source at location (θ,D) can be described as

I(s) ∝ mask
[(

1− d

D

)
s+ d tan θ

]
. (9)

From this lightfield expression we note that the slope of a line
corresponding to any light source is inversely proportional to
its depth. As a light source moves farther from the mask-
sensor assembly, its line would rotate around the center. As
a light source moves along a plane at a fixed depth, its line
would shift with the same slope. Therefore, in our imaging
model, we select depth planes in a given range by sampling
lightfield at uniform angles, which results in planes at non-
uniform depths.

5. EXPERIMENTAL RESULTS

To validate the performance of our proposed imaging model
and reconstruction algorithm, we performed extensive simu-
lations under different settings of FlatCam parameters.
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(a) Test scene with three cards
placed at three different depths
picked out of K = 10 depth planes
at random.

(b) Image reconstructed by assum-
ing that the scene consists of a single
plane at a fixed depth.
PSNR = 15 dB

(c) Image reconstructed using
depth-selective algorithm that
jointly estimates the depth and
intensity of each pixel.
PSNR = 33.5 dB

(d) Image reconstructed with three
cameras via depth-selective algo-
rithm that jointly estimates the
depth and intensity of each pixel.
PSNR = 39 dB

Fig. 4: Simulation results to demonstrate the effect of depth sensitivity and a
result for our joint depth and intensity reconstruction algorithm.

First, we show results of a simple simulation in which our
scene consists of three depth planes as shown in Fig. 4. We
simulated an imaging system in which a binary mask is placed
at 1mm distance from the sensor. We simulated a 3D voxel
space with ten depth planes within a depth range of 100mm
and 3m. We chose the ten depth planes by uniformly sam-
pling the lightfield representation. We simulated a scene with
128 × 128 spatial resolution, a mask with a binary random
sequence, and a sensor with 256 × 256 pixels. To generate
sensor measurements, we assumed that the 3D scene consists
of three planes chosen at random out of ten fixed planes. We
added a small amount of Gaussian noise in the true measure-
ments. To reconstruct the 3D scene, we solved the depth-
selective pursuit algorithm described in the previous section.
The results are presented in Fig. 4, where (a) denotes pixel
intensities for three planes in a 3D scene, (b) denotes image
reconstructed by assuming that all pixels belong to a plane at
fixed depth, and (c) denotes images reconstructed by solving
the depth-pursuit algorithm on the same measurements.

Next we discuss an experiment that demonstrates the ro-
bustness of our proposed model and method against mismatch
in the locations of the original depth planes and those used
for reconstruction. In this experiment, we simulated imaging
system withK = {5, 10, 15, 20, 25} depth planes chosen uni-
formly in the lightfield representation. We selected the three
depth planes for the scene at random and calculated the peak
signal to noise ratio (PSNR) for the recovered images. We
present PSNR for each test (averaged over ten instances) in

Number of imaging depth planes (K)

5 10 15 20 25

Single camera 33.83 33.58 31.27 30.5 30.99

Three cameras 39.07 39.09 40 39.54 39.58

Table 1: PSNR (in dB) comparison of reconstructed images for different
number of depth planes and different number of cameras.

Table 1. We see that the quality of reconstruction remains al-
most the same as we increase the number of depth planes in
our model. The computational complexity, however, slightly
increases as we increase the number of depth planes.

Finally, we present an experiment in which we simulated
a system with three lensless cameras in a convex geometry,
where one camera is used as a reference to generate depth
planes in the scene. The other two cameras see tilted planes
in their field of view. An advantage of such a configuration
is that the depth information of the pixels is converted into
angular information. However, this configuration also makes
a strong assumption that the scene only consists of the finite
number of tilted planes. The simulation results of three cam-
era system are also summarized in Table 1. An example of
image reconstruction for this case is shown in Fig. 4(d).

6. DISCUSSION AND CONCLUSION

We presented an imaging model and algorithm for the recov-
ery of 3D images from a single snapshot of lensless cameras.
We used lightfield representation model to select a uniform
sampling pattern in the lightfield representation, which results
in a non-uniform sampling in the depth planes. We presented
a greedy depth-selective pursuit algorithm to jointly estimate
pixel intensity and depth using a single or multiple lensless
cameras. We presented simulation results to demonstrate the
effectiveness of our proposed model and algorithm. The pla-
nar model we used in this paper is an approximation of the
real 3D scenes. In our future work, we will expand our algo-
rithm to more general and continuous depth estimation.
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