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ABSTRACT
In this paper, we develop a radar-based dense scene recon-
struction model that extracts shape information embedded
in the radar return signal. Our method uses a deformable
shape evolution approach which seeks to match the received
signal to a computed forward model based on the evolving
shape. This allows us to directly incorporate geometric con-
siderations of the shape into the problem formulation, such as
smoothness and self-occlusions. Iterations start with an initial
shape which is gradually deformed until its image under the
forward model gets sufficiently close to the actual measured
signal. For this purpose, we employ the technique of stretch
processing to extract geometric properties of the shape from
radar return signal. This yields a smooth and purely geomet-
ric cost functional by which shape inversion can be robustly
performed via gradient-based minimization algorithms. Syn-
thetic simulations with a polygonal shape model show the
promise of this type of approach on some challenging shapes.

Index Terms— Shape inversion, Radar imaging

1. INTRODUCTION
Vision systems are becoming more and more essential in
robotic systems because of the rich information they can pro-
vide about their environment. Especially for robots that are
to navigate in cluttered environments, awareness of the scene
structure is of great importance as it is usually the main lim-
iting factor on robot motion. Inferring such structure using
visual cues from camera images is a natural approach which
mimics the way we sense the world with our eyes. This
is an old and well established area of research in computer
vision known as structure from motion or multiview stereo
reconstruction, including methods based on deformable shape
models [1] [2]. However, stereo vision systems have inherent
fragility in the case of low ambient light or in the presence
of obstructing factors for the visible light spectrum, such as
rainy and foggy weather or smoke. As a result, alternative
sensing modalities can often be required for the applications
where these conditions are present.

Radar systems are immune to many factors which chal-
lenge visual sensors as they have good penetration capabilities
through certain mediums, air, water etc. [3] These systems are

essential especially for airborne and spaceborne imaging ap-
plications where light rays can easily be blocked by the clouds
or the thick layer of air between the antenna and ground scene.
Radar imaging is mostly performed with an apparatus known
as Synthetic aperture radar (SAR)[4][5][6][7]. A SAR system
is usually composed of a small antenna or antennas attached
to a moving platform which takes measurements of the scene
from different viewpoints. These measurements are then used
to synthesize a high resolution image of the scene. The scene
is modelled as an array of scatterers where a reflectivity (in-
tensity) value is assigned to each scatterer as a result of the
synthesis.

SAR imaging does not presently have an explicit notion of
shape that can easily be leveraged to exploit geometric prior
information about object shape. For example, we know that
the surfaces of scene objects usually exhibit some level of
smoothness which could potentially be used to regularize the
problem. Another important aspect of object geometry is self-
occlusion where certain parts of the object can block the view
of other parts. Occlusion modelling is especially critical for
close range applications where the visible parts of the object
can drastically change with respect to the view-point. Mod-
elling such considerations can be of great help to enhance the
quality of estimation.

In this paper, we propose a generative model based evolu-
tion approach for radar by which we can directly incorporate
object geometry into the problem formulation. In Section 2,
we formulate the forward model to be used to estimate the
received signal given the shape. Second, we outline an iter-
ative inversion scheme based on a deformable shape model.
In Section 3, simulations for different cases are presented. In
section 4, results are discussed.

2. DEFORMABLE SHAPE MODEL
Reflected radar signal is a highly non-linear function of shape
where the inversion problem can only be attacked by an itera-
tive approach. We first need a forward model to compute the
expected return signal given a candidate shape for the object.
We then measure the discrepancy between this computed sig-
nal and actual measured signal and use the residual error value
to update our guess for the object so that we have a decreased
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Fig. 1. Our Forward Model, Transmittance (left), Receivence (right), EM wave-object interaction (center)

error value in the next step.

2.1. Forward Model
Our forward model computes what is expected from the re-
ceiver antenna given a transmitted waveform and an object
shape (and reflectivity). On the antenna side, we model the
transmitter and receiver as point antennas with directional
gains. For the object, we assume Lambertian surface reflectiv-
ity where incoming radiation is scattered via a cosine power
law. From a small surface patch of area dS, the received sig-
nal is modelled as:

dQc (t) =
G′G (u′ · n) (u · n)

R′2R2
f

(
t− R+R′

c

)
dS (1)

where G′ and G are antenna gain values for the transmitter
and receiver in a given direction, u′ and u are the unit ray
directions connecting transmitter and receiver antennas to the
object, R′ andR are the lengths of these rays and n is the unit
normal vector of the object at the given point, respectively.
f(t) is the transmitted waveform which is mostly a frequency-
modulated complex exponential. Squared ray lengths in the
denominator model the decay of power density with wave
propagation (inverse-square law). Our forward model is de-
picted in the Fig. 1.

For a given antenna position, all of the visible points on
the surface will contribute to this measurement which makes
the total measured signal:

Qc (t) =

∫
S

G′G (u′ · n) (u · n)

R′2R2
f

(
t− R+R′

c

)
dS (2)

where S is the set of visible points visible to both transmitted
and receiver antenna.

2.2. Inverse Model
Our purpose is to estimate the surface shape from the mea-
sured signal, which requires inverting the forward model.
However, this model is highly nonlinear and inverting it is
an inherently ill-posed operation. That’s why we start with
an initial shape and let this shape evolve such that its image
under the forward model gets closer to the actual measured

signal, balanced by additional geometric priors under a de-
signed cost functional, with successive iterations.

Design of the cost functional to be used in an iterative
minimization procedure is tricky for radar applications, espe-
cially when high frequency waveforms are used. We need a
cost functional that is not only rich in shape information but
at the same time independent as possible from the structure of
the waveform being used. Naive choices for this design can
bring the oscillatory structure of the waveform into the cost
functional. This causes the energy manifold to be full of local
minima, making robust shape inversion impossible or imprac-
tical. Accordingly, the design of the cost functional is the key
component of our scheme. For this purpose we employ the
technique known as stretch processing [8]

2.2.1. Stretch Processing
Stretch processing is a commonly used technique in the radar
community to process large bandwidth signals using low sam-
pling rates. It is a requirement for some applications as signals
of large bandwidths cannot be processed directly on hard-
ware due to the sampling rate limitations of A/D converters
[9][10][11]. This is done by mixing the return signal with a
time shifted replica of the transmitted signal, which results
in a lower frequency signal at the mixer output that can then
be sampled properly. However, a more important aspect of
this process for us is that each frequency component residing
in the output signal can directly be linked to a subset of sur-
face points all of which have equal round-trip distance values.
This property of stretch processing will be highly beneficial
for our purposes as this indirectly gives us distribution of sig-
nal strength along the object range. For a point on the object
surface, we express the received signal in Eq. 1. Choosing
f(t) as an LFM pulse and transforming this signal using a
stretch processor, at the mixer output we obtain:

dh(t) =
G′G (u′ · n) (u · n)

R′2R2
Φ (tr) e

i4πα(tr−th)tdS (3)

Φ (tr) = ei2π(fc(tr−th)−α(t2r−t
2
h)) (4)

tr =
(
R′ +R

)
/c (5)

where α is the chirp rate, fc is the carrier frequency, tr and th
are the delays of received and replica signals with respect to
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the transmitted signal, respectively. Since the output signal of
the stretch processor will be the linear combination of these
infinitesimal components coming from visible points along
the object surface, the total output for the object becomes:

h(t) =

∫
S

G′G (u′ · n) (u · n)

R′2R2
Φ (tr) e

i4πα(tr−th)tdS (6)

where S denotes the visible part of the object surface with re-
spect to the transmitter and receiver. It should be noted that
Φ(tr) is a pure phase term that does not have any time depen-
dency.

2.2.2. Feature Extraction
The stretch processor output gives us another time dependent
oscillatory signal with respect to both t (time) and tr (round-
trip delay). Our purpose is to remove these dependencies such
that we can formulate our cost functional in terms of purely
geometric quantities. For this purpose, we will find it useful
to express Eq. 6 in terms of another integral with a frequency
measure. Assuming an infinitely long transmitted pulse, we
would have a finite support frequency spectrum where mini-
mum (fmin) and maximum (fmax) frequencies are specified
by minimum and maximum round-trip distance values of the
visible portion of the object surface. h(t) could then be ex-
pressed as a Fourier synthesis:

h(t) =

∫ fmax

fmin

H(ζ)ei2πζtdζ (7)

At this point we define a new function H(x) which will hap-
pen to be the envelope of the frequency spectrum. H(x) is
defined such that H(x) can be decomposed as:

H(x) = H(x)Φ(tr) (8)

tr =
x

2α
+ th (9)

Integrands in Eq. 6 and 7 can be related to each other after
cancellation which then becomes:

H(ζ) =

∫
Sζ

G′G (u′ · n) (u · n)

R′2R2

∥∥∥∥dSdζ
∥∥∥∥ ds (10)

where the Sζ is the set of iso-round-trip distant points that
induce a signal with a constant frequency of ζ at the mixer
output.
H(x) is almost always a smoothly changing function of

object shape when certain level of regularity is assumed for
the object surface. That’s why we choose to define our cost
functional in terms of this expression. It should be noted that
this expression is almost never a physically measurable quan-
tity (as the set Sζ is most of the time composed of finite num-
ber of curves lying on the object surface) so we compute its
integral over a frequency range and then use the average value
of the integral as our feature. We partition our frequency
spectrum [fmin, fmax] into frequency bins and integrate the
expression in Eq.10 over each frequency interval.

Hj =
1

∆fj

∫ fj

fj−1

∫
Sζ

G′G (u′ · n) (u · n)

R′2R2

∥∥∥∥dSdζ
∥∥∥∥ dsdζ (11)

∆fj = fj − fj−1 (12)

where superscript j denotes frequency bin index. It should
be emphasized that feature Hj does not have any waveform
dependency as we desire.

2.3. Inversion Scheme
We will perform shape inversion mainly by using the set of
geometric features we extract from the signal. There will be
two sets of these, one extracted from the actual return sig-
nal (Hj) and the other one from the evolving object (Ĥj).
For the following discussion, we will use a tailored version of
our formulation to a 2D case with a discrete polygonal shape
representation since our simulation results will be based on
this formulation. We will model our scene as a polygonal
shape which is parametrized by the set of the vertex coordi-
nates (vk). Object surface is then composed of line segments
connecting these vertices together. A given line segment can
have intersection with more than one frequency bin in which
case we slice it into pieces such that each piece is contained
in one frequency bin. As a result, a given frequency bin can
be contributed by portions of different line segments. For n
vertices, a given featureHj is computed as:

Hj =

n∑
k=1

Hkj (13)

where Hkj denotes the contribution to the Hj brought by the
line segment that connects vk to vk+1 (takes zero value if not
intersecting).

2.3.1. Cost Functional
Our cost functional depends mainly on these two sets of fea-
tures. We also add a curvature based regularizer penalty to
make the evolving shape favor a certain level of smoothness.
The ability to directly regularize the shape estimate in this
manner is a powerful advantage of this approach. Combining
these two terms yields:

E (v1, · · · ,vn) =

NF∑
j=1

(
Ĥj −Hj

)2
︸ ︷︷ ︸

Antenna Measurement Residual

+ λ
n∑
k=1

κ2
k︸ ︷︷ ︸

Geometric Prior

(14)

where NF is the number of frequency bins. In the case of
multiple antenna sets, residual term is additionally summed
over all antenna sets. For the regularizer term, λ is a tun-
able regularization coefficient and κk is the discrete curvature
value computed around the kth vertex. We define κk as:

κk =

∥∥∥∥ vk+1 − vk
‖vk+1 − vk‖

− vk − vk−1

‖vk − vk−1‖

∥∥∥∥ (15)

where vk−1, vk, vk+1 are the 2D coordinates of consecutive
vertices of our polygonal shape in counter-clockwise order.

2.3.2. Initialization
Using an iteration based approach brings the question of how
to choose an initial parameter set. Luckily our design of the
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Fig. 2. Shape evolutions for three cases. Initial shape estimates are shown along the left column. Final converged estimates are
shown along the right column and deformation process is illustrated in between. Sum of error squares for distances between
the vertices of the evolving and the actual object is given at the top(polygon has 100 vertices in total). Axes units are in meters

feature set gives an easy way to come up with a close initial-
ization. The feature set extracted from the actual measured
signal naturally reveals which frequency bins have an inter-
section with the object where a nonzero feature value implies
intersection. Triangulation of this information coming from
other antennas give us a good estimate for actual object shape
and placement.

2.3.3. Minimization
We use Nesterov’s accelerated gradient descent algorithm
[12][13][14] minimize our cost functional over the vertex co-
ordinates (v1, · · · ,vn). This yields a faster convegence rate
and increases robustness against shallow local minima. At
each iteration, we perform a visibility analysis on the evolv-
ing shape which defines our domain of integration (different
for each antenna).

3. SIMULATION RESULTS
We apply our inversion model to three progressively challeng-
ing 2D shapes that are modelled as polygonal objects . For
each polygonal shape, we fix the angular positions of the ver-
tices and let the shape evolve by changing their radii. Multi-
ple antennas are placed around the object as a circular pattern
with equal angular intervals between consecutive antennas.

Simulations are run for three different cases with differ-
ent initial and actual shapes. For each simulation, we use 20

antennas that are circularly placed around the object where
origin-antenna distance is taken as 6 meters. For each shape,
we use a polygonal model with 100 vertices.

4. CONCLUSIONS
We propose a new model for radar based shape inversion
that is using a forward model based approach since such an
approach allows us to introduce geometric properties of the
shape into the problem formulation. However, such an ap-
proach can be tricky when cost functional is naively chosen in
terms of radar signals as these oscillations can be easily trans-
ferred to the cost functional which would make the iterative
approach impractical. Thus we propose new way to design
features for radar a based inversion that are purely geometric
and independent of the waveform. Because of the easiness
in the implementation and visualization, we choose to tailor
our approach to 2D case. Simulation results are presented for
different cases where even for large initial parameter error
values, we see our method can effectively recover the shape
of the scene.
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