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ABSTRACT 

We consider fusing an arbitrary number of multiband, i.e., 

panchromatic, multispectral, or hyperspectral, images of the 

same scene. Using the well-known forward observation and 

linear mixture models, a vector total-variation penalty, and 

appropriate constraints, we cast this problem as a convex 

optimization problem. The total-variation penalty helps cope 

with the potential ill-posedness of the underlying inverse 

problem by exploiting the prior knowledge that natural images 

are mostly piecewise smooth in the spatial domain and 

comprise relatively few archetypical signatures, i.e., 

endmembers, in the spectral domain. We solve the formulated 

convex but non-smooth optimization problem using the 

alternating direction method of multipliers. Our experiments 

with multiband images constructed from real hyperspectral 

datasets demonstrate the performance advantages of the 

proposed algorithm over the existing algorithms, which need to 

be used in tandem to fuse more than two multiband images. 

 

Index Terms—ADMM, forward observation model, linear 

mixture model, multiband image fusion, total variation. 

1. INTRODUCTION 

Finely-resolved hyperspectral images are in great demand by 

various computer vision and remote sensing applications [1]-

[4]. However, limitations in light intensity as well as efficiency 

of the current sensors impose a trade-off between the spatial 

resolution, spectral sensitivity, and the signal-to-noise ratio 

(SNR) of existing spectral imagers [5]. As a results, typical 

spectral imaging systems can capture multiband images of high 

spatial resolution at a small number of spectral bands or 

multiband images of high spectral resolution with a reduced 

spatial resolution. One way to overcome this fundamental 

limitation is to capture multiple multiband images of the same 

scene that have complementary spatial and spectral resolutions 

and fuse them together synergistically. 

Initial multiband image fusion algorithms were developed to 

fuse a panchromatic image (with a single band) and a 

multispectral image (with typically 3 to 10 bands), which are 

geometrically co-registered. The associated inverse problem 

was named pansharpening [6]-[8]. Some of the algorithms 

developed for pansharpening have been successfully extended 

to perform hyperspectral pansharpening [9], i.e., to fuse a 

panchromatic image and a hyperspectral image (with typically 

more than 10 bands). Recently, significant research effort has 

been expended to fuse two co-registered multispectral and 

hyperspectral images [35], which is essentially different from 

(hyperspectral) pansharpening. 

The spatial or spectral degradation of an observed multiband 

image with respect to the target image can be expressed as a 

linear transformation, which induces a forward observation 

model. In addition, the spectrum of each pixel in a typical 

hyperspectral image is usually a linear mixture of a relatively 

few spectral signatures, called endmembers. This is because 

hyperspectral image data often reside in a subspace with a 

dimension that is much smaller than the number of the spectral 

bands, i.e., the dimension of the data space [10]-[12]. 

Many recent works on multiband image fusion that deal with 

fusing a multispectral image with a hyperspectral image of the 

same scene employ the abovementioned forward observation 

and linear mixture models, e.g., [13]-[18]. They generally cast 

the task of multiband image fusion as the reconstruction of a 

target image from two spatially and spectrally downgraded 

versions of it following the forward observation model. If the 

endmembers are known or extracted from the observed images, 

the problem boils down to estimating the endmember 

abundances of the target image. The estimate of the target 

image can then be obtained by mixing the extracted 

endmembers and the estimated abundances. 

When the number of spectral bands in the multispectral 

image is smaller than the number of endmembers, the linear 

inverse problem associated with the fusion of the multispectral 

image with a hyperspectral image is ill-posed and requires some 

form of regularization. Natural images are known to mostly 

consist of smooth segments with few abrupt changes 

corresponding to the edges and object boundaries [19]-[21]. 

Therefore, penalizing the total-variation of the target image is 

an effective way of regularizing the multiband image fusion 

problems [14], [22], [23]. 

To the best of our knowledge, all existing multiband image 

fusion algorithms are designed to fuse a pair of multiband 

images with complementary characteristics. Therefore, fusing 

more than two multiband images using the existing algorithms 

can only be realized by performing a hierarchical procedure that 

combines multiple fusion processes possibly implemented via 

different algorithms. For instance, in order to fuse a 

panchromatic, a multispectral, and a hyperspectral image of a 

scene, one can first fuse the panchromatic and multispectral 

images, then fuse the resultant multispectral image with the 

hyperspectral image. Such an approach is potentially slow and 

inaccurate since it may require several runs of different 
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algorithms and may suffer from propagation and accumulation 

of errors. 

In this paper, we propose an algorithm that can 

simultaneously fuse an arbitrary number of multiband images. 

We utilize the forward observation and linear mixture models 

to effectively model the data and reduce the dimensionality of 

the problem. Assuming matrix normal distribution for the 

perturbations in the observed images, the maximum-likelihood 

estimation of the endmember abundances of the target image 

amounts to solving a weighted least-squares problem. We 

regularize this problem by adding a vector total-variation 

penalty term and constraining the abundances to be nonnegative 

and add up to one for each pixel. The total-variation penalty 

serves two major purposes. First, it helps tackle the likely ill-

posedness of the maximum-likelihood estimation problem. 

Second, it allows for the incorporation of the prior knowledge 

that the natural images are mostly piecewise smooth and have 

few sharp variations. The nonnegativity and sum-to-one 

constraints on the endmember abundances ensure that the 

abundances have physically plausible values. They also 

implicitly promote sparsity in the estimated abundances. We 

solve the formulated convex but non-smooth optimization 

problem using the alternating direction method of multipliers 

(ADMM) [24], [25]. Simulation results show that the proposed 

algorithm outperforms several combinations of the existing 

algorithms, which need be cascaded to carry out fusion of 

multiple (more than two) multiband images. 

2. DATA MODEL 

2.1. Forward observation model 

Let us denote the target multiband image with 𝐿 spectral 

bands and 𝑁 pixels by 𝐗 ∈ ℝ𝐿×𝑁. We wish to recover 𝐗 from 

𝐾 observed multiband images 𝐘𝑘 ∈ ℝ𝐿𝑘×𝑁𝑘, 𝑘 = 1, … , 𝐾, that 

are spatially or spectrally downgraded and corrupted versions 

of 𝐗. We assume that 𝐘𝑘, 𝑘 = 1, … , 𝐾, are geometrically co-

registered and are related to 𝐗 via the following forward 

observation model 

 𝐘𝑘 = 𝐑𝑘𝐗𝐁𝑘𝐒𝑘 + 𝐏𝑘 (1) 

where 

𝐿𝑘 ≤ 𝐿 and 𝑁𝑘 = 𝑁/𝐷𝑘
2 with 𝐷𝑘 being the spatial 

downsampling ratio of the 𝑘th image; 

𝐑𝑘 ∈ ℝ𝐿𝑘×𝑁 is the spectral response of the sensor 

producing 𝐘𝑘; 

𝐁𝑘 ∈ ℝ𝑁×𝑁 is a band-independent spatial blurring matrix 

that represents a two-dimensional convolution with a blur 

kernel corresponding to the point-spread function of the 

sensor producing 𝐘𝑘; 

𝐒𝑘 ∈ ℝ𝑁×𝑁𝑘 is a sparse matrix with 𝑁𝑘 ones and zeros 

elsewhere that implements a two-dimensional uniform 

downsampling of ratio 𝐷𝑘 on both spatial dimensions (e.g., 

horizontal and vertical) and satisfies 𝐒𝑘
⊤𝐒𝑘 = 𝐈𝑁; 

𝐏𝑘 ∈ ℝ𝐿𝑘×𝑁𝑘 is an additive perturbation representing the 

noise or error associated with the observation of 𝐘𝑘. 

2.2. Linear mixture model 

Under some mild assumptions, multiband images of natural 

scenes can be suitably described by a linear mixture model [1]. 

Specifically, the spectrum of each pixel can often be expressed 

as a linear mixture of a few archetypal spectral signatures 

known as endmembers. The number of endmembers, denoted 

by 𝑀, is usually much smaller than the spectral dimension of a 

hyperspectral image, i.e, 𝑀 ≪ 𝐿. Therefore, if we arrange 𝑀 

endmembers corresponding to 𝐗 as columns of the matrix 𝐄 ∈
ℝ𝐿×𝑀, we can factorize 𝐗 as 

 𝐗 = 𝐄𝐀 + 𝐏 (2) 

where 𝐀 ∈ ℝ𝑀×𝑁 is the matrix of endmember abundances and 

𝐏 ∈ ℝ𝐿×𝑁 is a perturbation matrix that accounts for any 

possible inaccuracy or mismatch in the linear mixture mode. 

Every column of 𝐀 contains the fractional abundances of the 

endmembers at a pixel. The fractional abundances of each pixel 

are nonnegative and often assumed to add up to one. 

2.3. Fusion model 

Substituting (2) into (1) gives 

 𝐘𝑘 = 𝐑𝑘𝐄𝐀𝐁𝑘𝐒𝑘 + �̌�𝑘 (3) 

where the aggregate perturbation of the 𝑘th image is 

�̌�𝑘 = 𝐏𝑘 + 𝐑𝑘𝐏𝐁𝑘𝐒𝑘. 

Instead of estimating the target multiband image 𝐗 directly, we 

consider estimating its abundance matrix 𝐀 from the 

observations 𝐘𝑘, 𝑘 = 1, . . 𝐾, given the endmember matrix 𝐄. 

We can then obtain an estimate of the target image by 

multiplying the estimated abundance matrix by the endmember 

matrix. This way, we substantially reduce the dimensionality of 

the fusion problem and consequently its computational 

complexity. In addition, by estimating 𝐀 then 𝐗, we attain an 

unmixed fused image and obviate any additional unmixing, if 

demanded in a later processing stage. However, this approach 

requires the prior knowledge of the endmember matrix 𝐄. The 

columns of this matrix can be selected from a library of known 

spectral signatures, such as the U.S. Geological Survey digital 

spectral library [26], or extracted from the observed multiband 

images. 

3. ALGORITHM 

3.1. Optimization problem 

Given the observed images 𝐘𝑘, 𝑘 = 1, … , 𝐾, modeled by (3) 

and under the realistic assumption that the aggregate 

perturbations �̌�𝑘, 𝑘 = 1, … , 𝐾, have independent matrix normal 

distributions with identity column-covariance matrices and 

row-covariance matrices of 𝚲𝑘, it can be shown that the 

maximum-likelihood estimate of 𝐀 is the solution of the 

following weighted least-squares problem 

  min
𝐀

 
1

2
∑ ‖𝚲𝑘

−1 2⁄ (𝐘𝑘 − 𝐑𝑘𝐄𝐀𝐁𝑘𝐒𝑘)‖
F

2
𝐾
𝑘=1 . (4) 

Since (4) is prone to ill-posedness, we regularize it in two ways. 

First, we add an isotropic vector total-variation penalty term to 

the objective function. We denote this penalty by ‖∇𝐀‖2,1 

where ‖∙‖2,1 is the ℓ2,1-norm operator that returns the sum of 

ℓ2-norms of all the columns of its matrix argument and ∇𝐀 =
[(𝐀𝐃ℎ)⊤, (𝐀𝐃𝑣)⊤]⊤ ∈ ℝ2𝑀×𝑁 with 𝐃ℎ and 𝐃𝑣 being discrete 

differential matrix operators that, respectively, yield the 

horizontal and vertical first-order backward differences 

(gradients) of the row-vectorized image that they multiply from 

the right. Second, we constrain all columns of 𝐀 to be 
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nonnegative and sum to one. We symbolize this constraint, 

which forces the columns of 𝐀 to reside on the unit (𝑀 − 1)-

simplex, by adding the below indicator function to the objective 

function: 

𝚤(𝐀) = {
0 𝐀 ∈ {𝐀|𝐀 ≥ 0, 𝟏𝑀

⊤ 𝐀 = 𝟏𝑁
⊤ }

+∞ 𝐀 ∉ {𝐀|𝐀 ≥ 0, 𝟏𝑀
⊤ 𝐀 = 𝟏𝑁

⊤ }
 

where 𝐀 ≥ 0 means all the entries of 𝐀 are greater than or equal 

to zero. Consequently, we modify (4) as 

 min
𝐀

 
1

2
∑ ‖𝚲𝑘

−1 2⁄ (𝐘𝑘 − 𝐑𝑘𝐄𝐀𝐁𝑘𝐒𝑘)‖
F

2
𝐾
𝑘=1 + α‖∇𝐀‖2,1 + 𝚤(𝐀) 

(5) 

where α ≥ 0 is the regularization parameter. 

3.2. ADMM iterations 

To develop an efficient algorithm for fusing multiple 

multiband images, we use the alternating direction method of 

multipliers (ADMM) to solve (5). We split the problem to 

smaller and more manageable pieces by defining the auxiliary 

variables, 𝐔𝑘 ∈ ℝ𝑀×𝑁, 𝑘 = 1, … , 𝐾, 𝐕 ∈ ℝ2𝑀×𝑁, and 𝐖 ∈
ℝ𝑀×𝑁, and changing (5) into 

 min
𝐀,{𝐔𝑘},𝐕,𝐖

 
1

2
∑ ‖𝚲𝑘

−1 2⁄ (𝐘𝑘 − 𝐑𝑘𝐄𝐔𝑘𝐒𝑘)‖
F

2
𝐾
𝑘=1 + α‖𝐕‖2,1 + 𝚤(𝐖) 

subject to: 𝐔𝑘 = 𝐀𝐁𝑘, 𝐕 = ∇𝐀, 𝐖 = 𝐀. (6) 

Then, we write the augmented Lagrangian function associated 

with (6) as 

  ℒ(𝐀, 𝐔1, … , 𝐔𝐾 , 𝐕, 𝐖, 𝐅1, … , 𝐅𝐾 , 𝐆, 𝐇) 

          =
1

2
∑ ‖𝚲𝑘

−1 2⁄ (𝐘𝑘 − 𝐑𝑘𝐄𝐔𝑘𝐒𝑘)‖
F

2
𝐾
𝑘=1 + α‖𝐕‖2,1 + 𝚤(𝐖) 

          +
𝜇

2
∑ ‖𝐀𝐁𝑘 − 𝐔𝑘 − 𝐅𝑘‖F

2𝐾
𝑘=1 +

𝜇

2
‖∇𝐀 − 𝐕 − 𝐆‖F

2 

          +
𝜇

2
‖𝐀 − 𝐖 − 𝐇‖F

2                                                            (7) 

where 𝐅𝑘 ∈ ℝ𝑀×𝑁, 𝑘 = 1, … , 𝐾, 𝐆 ∈ ℝ2𝑀×𝑁, and 𝐇 ∈ ℝ𝑀×𝑁 

are the scaled Lagrange multipliers and 𝜇 ≥ 0 is the penalty 

parameter. 

Using the ADMM, we minimize the augmented Lagrangian 

function (7) in an iterative manner. At each iteration, we 

alternate the minimization with respect to the main latent 

variable 𝐀 and the auxiliary variables; then, we update the 

scaled Lagrange multipliers. Hence, we compute the iterates as 

 𝐀(𝑛) = argmin
𝐀

 ∑ ‖𝐀𝐁𝑘 − 𝐔𝑘
(𝑛−1)

− 𝐅𝑘
(𝑛−1)

‖
F

2
𝐾
𝑘=1  

 

+‖∇𝐀 − 𝐕(𝑛−1) − 𝐆(𝑛−1)‖
F

2
+ ‖𝐀 − 𝐖(𝑛−1) − 𝐇(𝑛−1)‖

F

2
 (8) 

 𝐔𝑘
(𝑛)

= argmin
𝐔𝑘

 
1

2
‖𝚲𝑘

−1 2⁄ (𝐘𝑘 − 𝐑𝑘𝐄𝐔𝑘𝐒𝑘)‖
F

2
 

+
𝜇

2
‖𝐀(𝑛)𝐁𝑘 − 𝐔𝑘 − 𝐅𝑘

(𝑛−1)
‖

F

2
, 𝑘 = 1, … , 𝐾  (9) 

 𝐕(𝑛) = argmin
𝐕

 α‖𝐕‖2,1 +
𝜇

2
‖∇𝐀(𝑛) − 𝐕 − 𝐆(𝑛−1)‖

F

2
  (10) 

 𝐖(𝑛) = argmin
𝐖

 𝚤(𝐖) +
𝜇

2
‖𝐀(𝑛) − 𝐖 − 𝐇(𝑛−1)‖

F

2
  (11) 

  𝐅𝑘
(𝑛)

= 𝐅𝑘
(𝑛−1)

− (𝐀(𝑛)𝐁𝑘 − 𝐔𝑘
(𝑛)

),   𝑘 = 1, … , 𝐾 

 𝐆(𝑛) = 𝐆(𝑛−1) − (∇𝐀(𝑛) − 𝐕(𝑛)) 

 𝐇(𝑛) = 𝐇(𝑛−1) − (𝐀(𝑛) − 𝐖(𝑛)) 

where superscript (𝑛) denotes the value of an iterate at iteration 

number 𝑛 ≥ 0. We repeat the iterations until convergence or a 

maximum allowed number of iterations is reached. 

3.3. Solution of subproblems 

The solution of (8) is 

         𝐀(𝑛) = [∑ (𝐔𝑘
(𝑛−1)

+ 𝐅𝑘
(𝑛−1)

)𝐁𝑘
⊤𝐾

𝑘=1  + 𝐐1
(𝑛−1)

𝐃ℎ
⊤ 

                                    +𝐐2
(𝑛−1)

𝐃𝑣
⊤ + 𝐖(𝑛−1) + 𝐇(𝑛−1)] 

                 × (∑ 𝐁𝑘𝐁𝑘
⊤𝐾

𝑘=1 + 𝐃ℎ𝐃ℎ
⊤ + 𝐃𝑣𝐃𝑣

⊤ + 𝐈𝑁)−1 

where we define 𝐐1
(𝑛−1)

 and 𝐐2
(𝑛−1)

 as 

[
𝐐1

(𝑛−1)

𝐐2
(𝑛−1)

] = 𝐕(𝑛−1) + 𝐆(𝑛−1). 

To make the computation of 𝐀(𝑛) more efficient, we assume 

that the two-dimensional convolutions represented by 𝐁𝑘, 𝑘 =
1, … , 𝐾, are cyclic and the differential matrix operators 𝐃ℎ and 

𝐃𝑣 apply with periodic boundaries. Consequently, in view of 

the circular convolution theorem, multiplications by 𝐁𝑘
⊤, 𝐃ℎ

⊤, 

𝐃𝑣
⊤, and (∑ 𝐁𝑘𝐁𝑘

⊤𝐾
𝑘=1 + 𝐃ℎ𝐃ℎ

⊤ + 𝐃𝑣𝐃𝑣
⊤ + 𝐈𝑁)−1 can be 

performed using the fast Fourier transform and its inverse. 

Equating the gradient of the cost function in (9) with respect 

to 𝐔𝑘 to zero results in 

       𝐄⊤𝐑𝑘
⊤𝚲𝑘

−1𝐑𝑘𝐄𝐔𝑘
(𝑛)

𝐒𝑘𝐒𝑘
⊤ + 𝜇𝐔𝑘

(𝑛)
 

                              = 𝐄⊤𝐑𝑘
⊤𝚲𝑘

−1𝐘𝑘𝐒𝑘
⊤ + 𝜇(𝐀(𝑛)𝐁𝑘 − 𝐅𝑘

(𝑛−1)
). 

 

(12) 

Multiplying both sides of (12) from the right by the masking 

matrix 𝐌𝑘 = 𝐒𝑘𝐒𝑘
⊤ and its complement 𝐈𝑁 − 𝐌𝑘 yields 

  𝐔𝑘
(𝑛)

𝐌𝑘 = (𝐄⊤𝐑𝑘
⊤𝚲𝑘

−1𝐑𝑘𝐄 + 𝜇𝐈𝑁)−1 

                  × [𝐄⊤𝐑𝑘
⊤𝚲𝑘

−1𝐘𝑘𝐒𝑘
⊤ + 𝜇(𝐀(𝑛)𝐁𝑘 − 𝐅𝑘

(𝑛−1)
)𝐌𝑘] 

 

(13) 

and 

 𝐔𝑘
(𝑛)(𝐈𝑁 − 𝐌𝑘) = (𝐀(𝑛)𝐁𝑘 − 𝐅𝑘

(𝑛−1)
)(𝐈𝑁 − 𝐌𝑘), (14) 

respectively. Note that we have 𝐒𝑘
⊤𝐒𝑘 = 𝐈𝑁 and 𝐌𝑘 is 

idempotent, i.e., 𝐌𝑘𝐌𝑘 = 𝐌𝑘. Summing both sides of (13) and 

(14) gives the solution of (9) for 𝑘 = 1, … , 𝐾 as 

𝐔𝑘
(𝑛)

= 𝐔𝑘
(𝑛)

𝐌𝑘 + 𝐔𝑘
(𝑛)(𝐈𝑁 − 𝐌𝑘) 

= (𝐄⊤𝐑𝑘
⊤𝚲𝑘

−1𝐑𝑘𝐄 + 𝜇𝐈𝑁)−1 

         × [𝐄⊤𝐑𝑘
⊤𝚲𝑘

−1𝐘𝑘𝐒𝑘
⊤ + 𝜇(𝐀(𝑛)𝐁𝑘 − 𝐅𝑘

(𝑛−1)
)𝐌𝑘] 

         +(𝐀(𝑛)𝐁𝑘 − 𝐅𝑘
(𝑛−1)

)(𝐈𝑁 − 𝐌𝑘). 

The terms (𝐄⊤𝐑𝑘
⊤𝚲𝑘

−1𝐑𝑘𝐄 + 𝜇𝐈𝑁)−1 and 𝐄⊤𝐑𝑘
⊤𝚲𝑘

−1𝐘𝑘𝐒𝑘
⊤ do not 

change during the iterations and can be precomputed. 

The subproblem (10) can be decomposed pixelwise and its 

solution is linked to the so-called Moreau proximity operator of 

the ℓ2,1-norm given by column-wise vector-soft-thresholding 

[27]. Therefore, defining 

𝐙(𝑛) = ∇𝐀(𝑛) − 𝐆(𝑛−1), 

the 𝑗th column of 𝐕(𝑛), denoted by 𝐯𝑗
(𝑛)

, is given in terms of the 

𝑗th column of 𝐙(𝑛), denoted by 𝐳𝑗
(𝑛)

, as 

𝐯𝑗
(𝑛)

= (max {‖𝐳𝑗
(𝑛)

‖
2

− α 𝜇⁄ , 0} /‖𝐳𝑗
(𝑛)

‖
2

) 𝐳𝑗
(𝑛)

. 

The solution of (11) is the value of the proximity operator of 

the indicator function 𝚤(𝐖) at 𝐀(𝑛) − 𝐇(𝑛−1), which is the 

projection of 𝐀(𝑛) − 𝐇(𝑛−1) onto the unit (𝑀 − 1)-simplex. We 

implement this projection employing the algorithm proposed in 

[28]. 
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4. SIMULATIONS 

To examine the performance of the proposed algorithm in 

comparison with the state-of-the-art, we carry out experiments 

with fusing three multiband images, viz. a panchromatic image, 

a multispectral image, and a hyperspectral image. We create the 

multiband images of the experiments using crops of two 

publicly available hyperspectral datasets, namely, Botswana 

[29] and Washington DC Mall [30]. After cropping, the former 

dataset has 400 × 240 pixels and 145 spectral bands and the 

latter dataset has 400 × 300 pixels and 191 bands. We use 

these datasets as the ground truth (reference image) for 

evaluating the fusion performance. Further simulation results 

using additional datasets can be found in [31]. 

We generate the hyperspectral image by applying a Gaussian 

blur filter with a kernel size of 5 × 5 and a variance of 1.28 to 

the reference image followed by downsampling with a ratio of 

4 in both horizontal and vertical directions for all bands. For the 

multispectral image, we use a Gaussian blur filter with a kernel 

size of 3 × 3 and a variance of 0.64 and downsampling with a 

ratio of 2 in both horizontal and vertical directions for all bands 

of the reference image. Afterwards, we downgrade the resulting 

image spectrally by applying the spectral responses of the 

Landsat 8 multispectral sensor [32]. We create the 

panchromatic image from the reference image using the 

panchromatic band of the Landsat 8 sensor without applying 

any spatial blurring or downsampling. We add zero-mean 

Gaussian white noise to each band of the produced multiband 

images such that the band-specific signal-to-noise ratio (SNR) 

is 30 dB for the multispectral and hyperspectral images and 40 

dB for the panchromatic image. 

The current multiband image fusion algorithms available in 

the literature are designed to fuse two images at a time. In order 

to compare the performance of the proposed algorithm with that 

of the existing ones, we consider fusing the abovementioned 

three multiband images in two stages using existing algorithms 

for pansharpening and hyperspectral-multispectral fusion. At 

the first stage, we fuse the panchromatic image with the 

multispectral one using two algorithms called the band-

dependent spatial detail (BDSD) [33] and the modulation-

transfer-function generalized Laplacian pyramid with high-pass 

modulation (MTF-GLP-HPM) [34]. In [6], where several 

pansharpening algorithms are studied, it is shown that the 

BDSD and MTF-GLP-HPM algorithms exhibit the best 

performance among all the considered ones. After performing 

the pansharpening, at the second stage, we fuse the 

pansharpened multispectral image with the hyperspectral image 

using the algorithms proposed in [14] and [17], [18], which are 

called HySure and R-FUSE-TV, respectively. These algorithms 

are based on total-variation regularization and are among the 

best performing and most efficient multispectral-hyperspectral 

fusion algorithms currently available [9], [35]. Using two 

different algorithms at each of the two stages results in four 

combined solutions. 

We use three performance metrics for assessing the quality 

of a fused image with respect to its reference image. They are 

the relative dimensionless global error in synthesis (ERGAS) 

[36], spectral angle mapper (SAM) [37], and 𝑄2𝑛 [38]. We 

extract the endmembers (columns of 𝐄) from the hyperspectral 

image using the VCA algorithm [39]. We utilize the SUnSAL 

algorithm [40] together with the extracted endmembers to 

unmix the hyperspectral image and obtain its abundance matrix. 

Then, we upscale the resulting abundance matrix by a factor of 

four and apply two-dimensional spline interpolation on each of 

its rows (abundance bands) to generate the initial estimate 𝐀(0). 

We initialize the proposed algorithm as well as the HySure and 

R-FUSE-TV algorithms by 𝐀(0). 

In the experiments with both considered datasets, we tune the 

values of the parameters in the HySure and R-FUSE-TV 

algorithms to yield the best possible performance. Additionally, 

in order to use the BDSD and MTF-GLP-HPM algorithms to 

their best potential, we provide them with the true point-spread 

function, i.e., the blurring kernel used to generate the 

multispectral images. In the proposed algorithm, we use 𝜇 =
1.5 × 103 and 𝛼 = 9 with both considered datasets. 

To assess the quality of the images fused using the proposed 

algorithm and the considered benchmarks, we present the 

values of the performance metrics resulting from experiments 

with both considered datasets in Table 1. The table also includes 

the time taken by each algorithm to produce the fused images. 

According to the results given in Table 1, the proposed 

algorithm significantly outperforms the considered 

benchmarks. It is also evident from the required processing 

times that the computational (time) complexity of the proposed 

algorithm is lower than those of its contenders. 

5. CONCLUSION 

We proposed a new multiband image fusion algorithm that 

can simultaneously fuse an arbitrary number of multiband 

images. We utilized the forward observation model together 

with the linear mixture model to cast the fusion problem as a 

reduced-dimension linear inverse problem. We used a vector 

total-variation penalty as well as nonnegativity and sum-to-one 

constraints on the endmember abundances to regularize the 

associated maximum-likelihood estimation problem. We 

developed the proposed algorithm by solving the consequent 

optimization problem using the alternating direction method of 

multipliers. Our experiments using two real hyperspectral 

datasets substantiated the advantages of the proposed 

algorithm. 

Table 1. The values of the performance metrics for assessing the fusion quality as well as the runtimes of the considered algorithms. 

Botswana  Washington DC Mall 

 ERGAS SAM (°) 𝑄2𝑛 time (s)   ERGAS SAM (°) 𝑄2𝑛 time (s) 

proposed 1.378 1.454 0.969 47.01  proposed 2.276 2.533 0.975 59.52 

BDSD & HySure 2.268 2.228 0.923 62.58  BDSD & HySure 4.039 4.767 0.923 79.68 

BDSD & R-FUSE-TV 2.276 2.238 0.923 62.10  BDSD & R-FUSE-TV 4.141 4.787 0.921 78.41 

MTF-GLP-HPM & HySure 2.034 2.256 0.938 62.78  MTF-GLP-HPM & HySure 4.240 4.809 0.916 79.28 

MTF-GLP-HPM & R-FUSE-TV 2.044 2.265 0.938 62.20  MTF-GLP-HPM & R-FUSE-TV 4.354 4.827 0.913 78.13 
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