
USING THE ARDUINO DUE FOR TEACHING DIGITAL SIGNAL PROCESSING

Joakim Jaldén∗, Xavier Casas Moreno

Dept. of Information Science and Engineering,
KTH Royal Institute of Technology, Sweden.

{jalden,xaviercm}@kth.se

Isaac Skog

Dept. of Electrical Engineering,
Linköping University, Sweden.
isaac.skog@liu.se

ABSTRACT

This paper describes an Arduino Due based platform for digital sig-
nal processing (DSP) education. The platform consists of an in-
house developed shield for robust interfacing with analog audio sig-
nals and user inputs, and an off-the-shelf Arduino Due that executes
the students’ DSP code. This combination enables direct use of
the Arduino integrated development environment (IDE), with its low
barrier to entry for students, its low maintenance need and cross plat-
form interoperability, and its large user base. Relevant hardware and
software features of the platform are discussed throughout, as are de-
sign choices made in relation to learning objectives, and the planned
use of the platform in our own DSP course.

Index Terms— Teaching, digital signal processing, Arduino

1. INTRODUCTION

Digital signal processing (DSP) is a subject that spans from the the-
oretical aspects of systems theory – including signals and systems
concepts such as linearity, time invariance, sampling, and transform
theory – to the practical details of low level programming – includ-
ing timing, buffer handling, and computational limitations. Different
DSP courses at different universities thus vary widely with respect to
the intended learning outcomes of the course. However, even more
theory-focused courses tend to have some associated lab component.

The DSP education within the electrical engineering program
at the KTH Royal Institute of Technology, Sweden, is mainly the-
oretical but has historically included projects implemented in Mat-
lab and a shorter lab session with Texas Instrument TMS320C7613
DSP boards. The Matlab project was designed to illustrate the use-
fulness of the theory for solving a concrete signal processing task,
and at the same time reinforce the learning of course content. The
lab session was mainly intended to inspire students by demonstrating
a real-time DSP system, and it relied solely on the interaction with
input and output signals of a preprogrammed DSP. The reasons for
using a preprogrammed platform were: to spare the student the time
consuming task of learning a complex DSP integrated development
environment (IDE); to avoid the need to maintain the IDE software
on the lab computers; and, above all, to avoid certain stability issues
of the employed IDE. However, many students explicitly asked for
DSP programming as part of the course. The absence of hands on ex-
perience with real-time DSP programming also made it challenging
to successfully teach concepts related to computational complexity
and hardware implementation.

To address the aforementioned drawbacks, and to enable some
programming within the course, we set out to pick a new lab platform

∗Funding for the project was provided by the School or Electrical Engi-
neering at the KTH Royal Institute of Technology.

Fig. 1. An Arduino Due board with the developed shield mounted
on top. The shield enables easy and safe interfacing of analog inputs
and outputs, controlling of program settings via potentiometers and
buttons, and measuring (via a dedicated output pin) of the number of
clock cycles needed to complete a DSP task.

for the course. Our choice was the Arduino Due1 board together
with an in-house developed analog shield, shown in Fig. 1. The
shield provides a robust and easy-to-use analog interface, while all
DSP functionalities are implemented on the off-the-shelf Arduino
Due board. We see a number of benefits of this approach, as outlined
next.

• The Arduino platform is a well-known platform with a mas-
sive user base. Programming is typically done in a single C
or C++ file referred to as a sketch, in an open IDE, with roots
in the Processing project at MIT Media Lab, and constructed
with ease of use in mind. Arduinos are also frequently used in
the teaching of other subjects in EE, see e.g. [1]. This means
that it is likely that students are already familiar with the plat-
form. These two reasons combined makes for a low barrier to
entry.

• The large user base for the Arduino platform promotes the
long term viability of the platform, and support across all ma-
jor operating systems [2]. This also minimizes the mainte-
nance costs of keeping and updating the IDE and drivers.

• The Arduino board allows for easy access to low level pro-
gramming. As it does not have an operating system, it allows

1General information on the range of Arduino platforms is available at
https://www.arduino.cc, and specific information on the Arduino
Due can be found at https://store.arduino.cc/arduino-due.

6468978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

1 kΩ 470 nF

A0/A1

6.8 nF 47 kΩ

47 kΩ

3.3 V
220µF

3.3 V

In

3.3µF

DAC0/DAC1
10 kΩ

180 Ω

−

+

5.0 V
470µF

LM386

220µF

10 Ω

0.1µF

5.0 V

1 kΩ

Out

5 V

5.0 V

3.3 V

3.3 V

GND

Arduino Due

Fig. 2. Input and output circuit schematic of the developed shield. The schematic illustrate one of the two audio channels.

for direct and predicable access to for instance the ADCs and
DACs, and easy configuration of timed interrupts for schedul-
ing DSP tasks. This makes the step from theory, as presented
in standard textbooks such as [3], to practice much smaller.

• The Arduino Due features a 32-bit ARM Cortex-M3 micro
controller, the AT91SAM3X8E (SAM3X), clocked at 84
MHz. This enables the software implementation of a rea-
sonable range of typical real-time signal processing tasks, in
particular for audio signal processing, without at the same
time being overpowered. The use of audio is particularly
suitable for education, as students are intuitively familiar
with this type of signals.

• The relatively low cost per unit of the platform makes it fea-
sible to provide each student with an individual sample of the
platform for the duration of the course. This enables exper-
imentation without the need of a dedicated lab environment,
e.g., to test real-time code related to specific lecture topics.

There exist a few other Arduino based approaches to DSP ed-
ucation. Examples include the lab-in-a-box platform [4] developed
by the Kovacs lab at Stanford University, the Arduino DSP lab de-
veloped by C. Hochgraf at Norwich University [5], and the Analog
Discovery board in conjuncture with the less powerful Arduino Uno
or the Digilent ChipKIT UNO32 [6]. Our approach differs from [5],
which use the simpler Arduino Uno 8-bit ATmega328P microcon-
troller board clocked at 16 MHz. While such a platform really tests
the students understanding of concepts such as quantization, limit
cycles, and numerical overflow [3], it is effectively impossible to
use for audio signal processing. The platform in [4] also makes use
of an Arduino Uno, but mainly as an interface to a Texas Instru-
ment TMS320C5535 DSP and an IIC3204 audio codec. While this
makes that platform highly suitable for audio signal processing, it re-
quired the development of a separate IDE for the DSP programming
with the associated software development and maintenance costs.
As noted in [7], one of the issues with that platform when used in
a DSP course at Stanford in 2015 was the lack of Linux support for
the IDE at that time. Such issues are largely avoided when relying
on the standard off-the-shelf Arduino IDE. The setup in [6] provides
capabilities most similar to the one presented herein, albeit the use
of the more powerful UNO32 currently requires a third party add-on
to the Arduino IDE, and still offer lower computational power than
the Arduino Due.

There exist other platforms that explicitly target DSP educa-
tion, suitable for real-time audio signal processing at attractive price
points. These include the combination of the ST STM32F4 Dis-
covery Board with the Wolfson Audio Card and the Cypress FM4

Starter Kit, both included in the Arm University Program2. These
cards come with educational material as part of the Arm University
Program, and are based on more capable Arm Cortex-M4 microcon-
trollers. The user bases of these platforms are however still small
compared to the Arduino community which make the long term sup-
port of the platforms and the IDE less certain. They also currently
lack native support in the Arduino IDE. A comparison of various de-
velopment platforms and their suitability for real-time DSP educa-
tion at different levels can be found in [8], and an excellent overview
of recent ICASSP papers on real-time hardware for DSP education
is provided in [9].

The installation of the Arduino IDE, as well as the compilation
and deployment of code over a USB interface, is extremely sim-
ple. IDE installer packages are available for Windows, Mac OS X,
and Linux. The interaction of the DSP code with real world sig-
nals can be tested by connecting a common audio source such as
a smartphone or laptop, and by listening to the processed output.
This means that a student can experience real-time signal processing
within a few minutes after being provided the platform, and without
the need for access to a dedicated lab environment.

2. THE PLATFORM

This section describes the hardware and software platform, and how
the design choices made relates to the learning activities. Explicit
learning activities are then further discussed in Section 3.

2.1. The shield

Since we were unable to find a suitable shield for the Arduino Due
which included the functionality we were looking for, we decided
to develop our own in-house. The primary purpose of the hardware
shield is to provide a robust and easy way of connecting analog sig-
nals to the Arduino for DSP. We chose to use standard 3.5mm stereo
audio connectors for the input and the output to simplify the use of
smartphones and laptops as signal sources, and to allow the use of
standard headphones as an easy way to listen to the output signal.
We also made design choices to minimize the risk of damaging the
Arduino by e.g., accidentally connecting a high voltage signal source
to the input or the output connector, or shorting either connector to
ground. Fig. 1 shows the actual hardware shield that implements

2For information on both the Arm university program, as well
as the specific platforms, see https://developer.arm.com/
academia/arm-university-program/for-educators/
digital-signal-processing.

6469

two analog channels, and Fig. 2 shows a schematic of the input and
output circuitry.

The Arduino Due board is equipped with 12 analog inputs
(ADCs) and 2 analog outputs (DACs), all with a 12 bit resolution.
This reduces the amount of additional analog components needed
to realize the full analog-digital-analog chain. The ADCs operate
in the range 0 to 3.3V, and ground referenced input signals need
to have a 1.65V DC offset added to them before they are sampled.
The input circuit in Fig. 2 adds this offset and implement a second
order band pass filter with pass-band gain 0.96 and lower and upper
3 dB cut-off frequencies at 13.6 Hz and 24.7 kHz, respectively. This
provides DC decoupling from the source, and a sufficient suppres-
sion of high frequency noise that was otherwise aliased into the
audible range by the ADC. The Arduino can amplify the analog
input (around the 1.65V DC offset) by a factor of 1, 2, or 4; the gain
is configurable via software. With a gain of 4 a standard consumer
0.894 V peak-to-peak audio signal just about fills the entire ADC
input range.

The DACs of the Arduino Due provide simple zero-order hold
digital to analog conversion. The DACs are capable of delivering 15
mA and can directly drive a high impedance input, such as a line-
in audio port. The only thing needed is a decoupling capacitor to
remove the output DC offset. However, the DACs are not capable
of directly driving low impedance loads, such as passive speakers or
headphones. To make the setup more flexible for the students we
therefore decided to add an on board power amplifier based on the
commonly used LM386 audio amplifier circuit. We fixed the gain
so that the output is loud, but not excessively so, when driving a
set of standard headphones with a signal that occupy the full DAC
output range. The 220 µF output capacitor shown in Fig. 2 imple-
ments a high pass filter with a cutoff frequency of 25.9 Hz when
driving a 32 Ω load. A 1 kΩ resistor at the output is included to
quickly remove DC charges in the output capacitor when using a
high impedance load such as an oscilloscope.

When using the board it is sometimes convenient to use signal
generators for inputs. The signal generators in our lab can be set to
generate signals with up to 20 V peak-to-peak amplitude and could
thus potentially damage the boards if configured and connected in-
correctly. We therefore added diode clamps to the input and output
to provide protection against over-voltage. We also found it neces-
sary to include voltage stabilizing capacitors to the input and output
to reduce ringing in the analog signals that occurred on some copies
of the Ardunio boards when combined with certain power sources.

Finally, we connected: two of the analog inputs to potentiome-
ters; two digital inputs to push buttons; and 8 digital outputs to
LEDs labelled 0 to 7. These additional inputs and outputs can be
read and set by software, which provides additional flexibility. Fur-
ther, we added two software configurable digital general-purpose
input/output (GPIO) pins which, e.g., can be used to output clock
pulses and signal the start or stop of interrupt events. Specific use
cases of these capabilities are discussed in Section 3. Finally, the au-
dio jacks, the potentiometers, and the push-buttons are all chosen as
through-hole components, to increase the physical robustness of the
shield. The remaining components are surface mounted to simplify
the production of the shields.

For use in our DSP course at KTH we have manufactured 35
shields, at a per unit cost of approximately US$55 using a printed
circuit assembly (PCA) service. The Arduino Due, and USB and
audio cables, add another US$40 per lab kit. Both prices can be
further reduced when ordering larger quantities. Nevertheless, at
this price point we forecast being able to provide each student with
an individual kit for the duration of the course.

2.2. The Arduino Due

As stated in Section 1, the Arduino Due is built around a SAM3X
32-bit ARM Cortex-M3 micro controller, clocked at 84 MHz. In our
current implementation, we use one of the SAM3X timers to trig-
ger an interrupt every 1750 clock cycles for reading from ADCs and
writing to the DACs, yielding a sampling rate of 48 kHz3. While
handling input and output via an interrupt in this fashion is not ideal
for high audio fidelity due to sample jitter, we perceive it to be of
sufficient quality for educational purposes. In fact, the biggest dis-
turbance does not seem to be jitter but rather a noise introduced by
the DACs, even when only used to deliver a static DC signal.

The 1750 clock cycles available per sample at the 48 kHz sample
rate is sufficient for a reasonable amount of real-time signal process-
ing, as most relevant Cortex-M3 instructions of the SAM3X take
either one or two clock cycles. During our tests, we have been able
to realize FIR filters of more than 100 taps using convolution in the
time domain, and over 200 taps when implemented in the frequency
domain using overlap save with a 1024-point FFT4.

The lack of an operating system, and single threaded execution
of code on the Arduino, is helpful when learning DSP implemen-
tation. Although setting up the interrupt handling is not straightfor-
ward, it is relatively easy to visualize when a particular piece of code
is executed, and thus to relate the results to signals and systems the-
ory. Further, any of the analog or digital inputs can be read at any
time in the code, making it easy for students to, e.g., use the two po-
tentiometer values as parameters in their implementation. It is also
straightforward to change the initial code to, say, sample at other
rates or to run the ADCs and DACs at different rates.

The biggest deficit of the platform is in our view the lack of
a floating point unit in the SAM3X microcontroller. While fixed-
point implementations is an important topic taught in many DSP
courses, and while 32-bit computations are not exactly limiting, it
would sometimes be helpful with the abstraction of infinite preci-
sion real valued computations. The Arduino IDE also lacks a proper
debugger. However, this is to some extent remedied by the built-in
serial monitor that can be used for so-called printf-debugging for
smaller projects.

3. FROM THEORY TO PRACTICE

In standard textbooks, a DSP system for processing of a continu-
ous time signal, is often presented as in Fig. 3 [10]. A continuous-
time (analog) signal is sampled, and possibly quantized, to produce
a discrete-time (digital) signal, which undergoes some processing
and is then converted back to a time-continuous signal via a pro-
cess such as pulse amplitude modulation. Although not explicitly
expressed, this view tends to be interpreted in the way that samples
are processed one by one in the same order they are delivered by the
sampling circuit. However, this is not the way most DSP systems are
structured. Typically, the implementation of the ADC relies on direct
memory access (DMA), where samples are accumulated in a buffer,
followed by processing of complete signal blocks [11, pp. 223-224].
The DAC is implemented similarly. The simple model in Fig. 3,
where the discrete-time samples are though of as time-synchronized

3For ADC, DAC and interrupt handling, we use a slightly modified ver-
sion of a code made available by user MarkT in the Arduino forum, at
https://forum.arduino.cc/index.php?topic=205096.0.

4In our reference implementations, we apply a single real-valued FIR fil-
ter to both the left and right audio channel. All code is written in C/C++,
and complied using the standard optimization setting -Os for the gcc/4.8.3
compiler provided with a basic installation of the Arduino 1.8.3 IDE.

6470

ADC DAC

Q DSP PAM
p1(t)

x(t)
nT

y[n] z[n] v(t)

Fig. 3. A block diagram of a DSP system for processing of continu-
ous time signals as it is commonly presented in textbooks.

with the analog signal according to y[n] = x(nT), is however help-
ful when interpreting and understanding the mathematics. There-
fore, from a learning perspective, a benefit of the proposed platform
is that both the sample-by-sample and block based paradigms can
easily be implemented. In what follows we illustrate how we aim to
use these capabilities in teaching the DSP subject. These learning
activities are similar to those described in [6], albeit using a different
platform.

3.1. Sample-by-sample processing

It is often natural to start by considering sample-by-sample process-
ing, which is conceptually closest to how the theory is usually pre-
sented. Placing a per-sample DSP code inside the interrupt routine
used for reading from the ADC and writing to the DAC provides the
intuitive time-synchronization between the continuous-time and the
discrete-time signals. Standard IIR and FIR filters are easily imple-
mented using a for loop. It is also relatively simple to illustrate
and analyze the effects of limited precision (quantization), as well as
topics such as overflow and limit-cycles [3].

Just as potentiometers can be used to change the characteristics
of an analog filter, we can here use the them to change the coeffi-
cients of, say, a second order AR filter or a first order ARMA filter,
and see the resulting changes in real-time. The digital buttons can be
used to change the type of filter used, allowing instantaneous back
and forth comparisons of different filter types without any interme-
diate platform reprogramming.

Sample-by-sample processing also provides an illustrative entry
point to a discussion of computational complexity and available re-
sources, as the processing for each sample needs to be completed
before the next sample arrives. As a tool to assist this discussion
the shield have one GPIO pin that can be configured to output the
clock pulses of the microcontroller and a second GPIO pin that can
be configured to go high (low) at the start (end) of a selected code
segment. Thus, by connecting a pulse counter or an oscilloscope to
these pins, the number of clock cycles needed to complete a code
segment can be directly measured. Similar measurements can be ob-
tained by reading the clock register at the start and end of the code
segment, but this is not quite as illustrative in a lab setting.

3.2. Sampling and multi-rate signal processing

The sample-by-sample processing framework, in combination with
the ease with which the ADCs and DAC update rates can be config-
ured, makes it easy to explore aliasing and reconstruction, as well
as to implement multi-rate signal processing applications. The ana-
log antialias filter has, as noted, a fixed 3 dB cutoff frequency of
24.7 kHz, and only drop off at 20 dB per decade. Aliasing of signals
above 24 kHz is therefore clearly visible in a spectrum measurement,
although this does not seriously degrade the audio quality when lis-
tening to, e.g., music. Reducing the sampling rate below 48 kHz,

however, makes the aliasing effect clearly audible as well. Finally,
reading from the ADCs and writing to the DACs at different rates
enables learning activities related to discrete-time rate conversion.

3.3. Block based processing

The extension to block based signal processing is straightforward,
and can be done by modifying the code used for learning activities
described in Section 3.1 so that the interrupt is just used for writing
to and reading from input and output buffers. Code to be executed
per block can be placed in the main loop of the sketch and initiated
via a flag indicating when enough samples have been collected to fill
a buffer. This can be used to simulate sampling via DMA.

If the samples are collected in a ring buffer it is also easy to
implementing overlapping blocks of samples, as needed for exam-
ple when implementing overlap save filtering using an FFT [10].
The complexity benefits of processing in the frequency domain can
be illustrated using the clock counting procedure described in Sec-
tion 3.1. Implementation of the FFT in fixed point arithmetics on the
SAM3X is somewhat challenging, and could be a learning objective
in itself, but is certainly feasible as shown by our test implementa-
tions. It is also possible to demonstrate that, e.g., longer FIR filters
can be implemented using frequency domain techniques rather than
straightforward convolution in the time domain.

4. SUMMARY

This paper has described an Arduino Due based platform for teach-
ing digital signal processing, and the development of an analog
shield for interfacing with audio signals. By using the Arduino Due
for handling the DSP coding, it is possible to provide a student
friendly DSP learning environment with a low barrier to entry. We
see the use of the unmodified Arduino IDE as a key feature of the
proposed platform, both when viewed from the students’ perspec-
tive, as well as from the teacher’s perspective in terms of platform
maintainability and longevity. The platform has some drawbacks,
such as low fidelity, sample jitter, lack of a floating point unit,
and the absence of a debugger. Nonetheless, we believe that these
deficits are overshadowed when teaching DSP by the ease of use of
the platform. In particular, the Arduino Due provides an excellent
platform for DSP learning activities such as: real-time filter imple-
mentation, both in the time and frequency domain; quantization and
fixed point implementations; sampling, reconstruction, and aliasing;
and computational complexity. Last but not least, with the low
cost of the platform it is feasible to provide each student with an
individual copy. This facilitates the use of hands on DSP learning
activities throughout the course, in the same spirit as various other
lab-in-a-box initiatives in STEM subjects. The low cost also makes
the platform a viable option for use in online courses.

5. EPILOGUE

Since this paper was written, 35 copies of the platform was created
and used for a lab activity in the DSP course at KTH in the fall of
2017. Overall the lab activity was very well received by the students.
In particular, the use of the GPIO pins for the timing of frequency do-
main filtering using overlap-save was very useful in the teaching of
these methods. The students’ usage of the platform, and installation
of the IDE, was largely without problems, although code optimiza-
tion compiler directives were found to be less robust across software
environments than expected. Lab instructions can be provided upon
request by the first author.

6471

6. REFERENCES

[1] J. Sarik and I. Kymissis, “Lab kits using the Arduino prototyp-
ing platform,” in Proc .of ASEE/IEEE Frontiers in Education
Conference (FIE), Washington, DC, Oct. 2010.

[2] A. A. Galadima, “Arduino as a learning tool,” in Proc. of
11th International Conference on Electronics, Computer and
Computation (ICECCO), Abuja, Nigeria, Sept. 2014.

[3] J. G. Proakis and D. G. Manolakis, Digital Signal Processing
– Principles, Algorithms, and Applications, Pearson Education
(US), 2006.

[4] W. J. Esposito, F. A. Mujica, D. G. Garcia, and G. T. A. Kovacs,
“The lab-in-a-box project: An Arduino compatible signals and
electronics teaching system,” in Proc. of IEEE Signal Process-
ing and Signal Processing Education Workshop (SP/SPE), Salt
Lake City, UT, Aug. 2015.

[5] C. Hochgraf, “Using Arduino to teach digital signal process-
ing,” in Proc. of ASEE Northeast Section Conference, North-
field, VT, Mar. 2013.

[6] M. A. Wickert, “Real-time DSP basics using Arduino and the
analog shield SAR codec board,” in Proc. of IEEE Signal Pro-
cessing and Signal Processing Education Workshop (SP/SPE),
Salt Lake City, UT, Aug. 2015, pp. 59–64.

[7] F. A. Mujica, W. J. Esposito, A. Gonzalez, C. R. Qi, C. Vassos,
M. Wieman, R. Wilcox, G. T. A. Kovacs, and R. W. Schafer,
“Teaching digital signal processing with Stanford’s lab-in-a-
box,” in Proc. of IEEE Signal Processing and Signal Process-
ing Education Workshop (SP/SPE), Salt Lake City, UT, Aug.
2015.

[8] D. Y. Shi and W. S. Gan, “Comparison of different develop-
ment kits and its suitability in signal processing education,” in
Proc. of IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Shanghai, China, Mar. 2016,
pp. 6280–6284.

[9] C. H. G. Wright, T. B. Welch, and M. G Morrow, “Reinforcing
signal processing theory using real-time hardware,” in Proc. of
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), New Orleans, LA, USA, Mar. 2017.

[10] S.K. Mitra, Digital Signal Processing: A Computer-Based Ap-
proach, Mc Graw Hill, 1998.

[11] A. Bateman and I. Paterson-Stephens, The DSP Handbook: Al-
gorithms, Applications and Design Techniques, Prentice Hall,
2002.

6472

