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ABSTRACT

Impact of online learning sequences to forecast course outcomes for
an undergraduate digital signal processing (DSP) course is studied in
this work. A multi-modal learning schema based on deep-learning
techniques with learning sequences, psychometric measures, and
personality traits as input features is developed in this work. The
aim is to identify any underlying patterns in the learning sequences
and subsequently forecast the learning outcomes. Experiments are
conducted on the data acquired for the DSP course taught over 13
teaching weeks to underpin the forecasting efficacy of various deep-
learning models. Results showed that the proposed multi-modal
schema yields better forecasting performance compared to existing
frequency-based methods in existing literature. It is further observed
that the psychometric measures incorporated in the proposed multi-
modal schema enhance the ability of distinguishing nuances in the
input sequences when the forecasting task is highly dependent on
human behavior.

Index Terms— Deep learning, Online education, Learning se-
quence, Resource usage

1. INTRODUCTION

The use of technology for education is not always affirmative. On-
line education such as massive open online courses (MOOC) has
attracted debates surrounding its efficacy to deliver content as effec-
tive as brick-and-mortar classroom settings. It is well known that
online learning systems are largely plagued with low retention rates
and low knowledge transference as a result of lowered engagement
and higher distraction levels [1]. Dropout rates of MOOCs in the first
few weeks can be as high as 93% and the overall completion rates
usually hovers only around 10% [2]. Specifically, an undergraduate
MOOC DSP has observed only an average of 3% completion over
multiple course runs [3]. To diagnose this problem, education data
mining research focus on developing tools for the purposes of detect-
ing undesirable behaviors and early detection of possible drop-out to
intervene and prevent such destructive outcomes [4, 5].

Most of the existing tools and models in existing literature are
derived from time-based features extracted from transactional logs of
content access and performance records when users navigate through
the course. Such information is derived at learning checkpoints or
over a set period of duration or set of activities. These features have
been employed to predict (a) the type of certification awarded to par-
ticipants through their engagement and performances levels [6] and
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(b) dropout in the first three weeks using various participation mea-
sures during the first week [7]. The frequencies of interaction actions
were also analyzed to understand how students consume video media
and how these media can be designed to maintain student engage-
ment [8]. While they show promising results in identifying when
course-level outcomes, such as dropout and grade outcomes, did not
meet desired expectations, these frequency-based predictive models
are not diagnostic of learning itself and may not generalize to other
learning outcomes such as knowledge mastery.

Learning itself is often considered as a process where individu-
als constantly make numerous spontaneous decisions based on feed-
backs from internal self-monitoring mechanisms or external instruc-
tional feedbacks from educators and extrinsic motivators [9]. In an
online learning platform, this manifests as a series of actions an indi-
vidual takes to achieve their intended outcomes, of which may not be
aligned with the intended outcome of the course. The nuances in the
online transactional action logs indicative of individuals motivation
and goal to engage in such an online system are washed out when
they are aggregated as frequency-based features during preprocess-
ing. The study of learning action sequences can take advantage of
sequence-based predictive models that learn from these nuances to
perform the predictions. In this aspect, Fei et al. trained a recur-
rent neural network (RNN) with the frequencies of various teaching
modes that span across a week to predict dropout [10]. These teach-
ing modes include lectures, forums, and quizzes. However, learn-
ing education sequences are beyond simply adapting existing deep
learning techniques. Tang et al. were unable to achieve good pre-
diction results when they trained a long short-term memory (LSTM)
network using raw sequences [11].

Deep architectures have the ability to extract appropriate fea-
tures from raw inputs to perform regression and classification. The
deep architecture enables the network to learn higher-level represen-
tations from lower-level features of the input data so as to identify
the underlying relation between input and output spaces. RNN can
be considered as having a deep architecture since the hidden states
are recursively used to embed the input sequence. RNNs have seen
many successful applications in text-mining and web usage mining
recently. Some of these models include the classification of movie
reviews for sentiment analysis [12], image captioning [13] and clas-
sification of text documents genres. Although texts and online learn-
ing sequences have fundamentally similar constructs, their compo-
sitions are different. Text documents consist of words and phrases
sparsely sampled from a very large vocabulary and the semantics
varies depending on how they are used. On the other hand, learning
sequences are formed by highly repetitive discrete symbols from a
smaller bank of possible actions and there exists no semantics of a
certain action when studied in isolation. The dense vocabulary meant
that the relationship between timesteps may not be independent and
models with such assumption may fail.
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Apart from online learning sequences, a learners personality can
drive his efforts towards a goal. In earlier works for learning analyt-
ics, studies were carried out to understand the impact of self-reported
psychometric attributes such as motivation and persistence on on-
line learning and how these attribute-behavior relationships changed
from traditional classroom context to the cyber world. The use of
technology also enables researchers to gain more insights into learn-
ing behaviour beyond static traits. Detectors of dynamic behavior
such as gaming the system and off-task behaviour were developed
and studied for their impact on learning outcomes [14, 15].

In this paper, we demonstrate the advantage of using sequences
to train models compared to frequency-based models for the pre-
diction of grade performances in a digital signal processing (DSP)
course. The models will be trained using clickstream logs of lec-
ture content viewing when learners prepare for their weekly tutorials.
More importantly, we show that the inclusion of static psychometric
attributes of students improved model prediction accuracy.

2. THE PROPOSED LSTM-BASED PREDICTION MODEL

The proposed architecture consists of four main components: the
input layer, convolution layer, LSTM, and psychometric covariates.

Input layer: Without any pre-processing, neural networks can-
not accept discrete learning action symbols as its inputs. One of
the methods to convert these discrete symbols into a vector is to
use one-hot encoding where a numerical Boolean indicator identi-
fies the word in a n-length vector describing all possible symbols in
the models. The sparsity and lack of information makes it difficult
for a neural network to learn features that are required to perform the
prediction task. Two popular approaches to overcome such sparsity
involve the use of either an auto-encoder or an embedding layer to
convert the sparse vector into a dense continuous vector.

A typical auto-encoding input layer consists of a fully-connected
feed-forward neural network that compresses the inputs to much
smaller dimensions across a few hidden layers and subsequently us-
ing the hidden representation to reconstruct its input. The hidden
states then form the dense continuous vector representation of the
discrete input. Auto-encoders are typically trained prior to the mod-
elling and continue to be updated together with other components of
the model.

On the other hand, an embedding layer consists of an n × m
lookup table with randomly initialized values. Each of the n rows
in the lookup table is a m-dimensional vector representing an in-
put. The values of the lookup table are updated during training using
information propagated back from the model objective function.

In this paper, we compare the impact of different learning
paradigms of the embedding and auto-encoding layer towards mod-
eling education sequences.

Convolution layer: A convolution layer consists of a set of fil-
ters (kernels) that is much smaller than the matrix that it is applied
onto. Each kernel learns local spatial information in a matrix by re-
peatedly convoluting across the matrix at every k strides. The convo-
lution layer can be used to extract and aggregate patterns of a dense
matrix into a more concise representation which a neural network
can better utilize to perform the prediction.

LSTM: The LSTM recurrent neural network is a variant of the
RNN family where the hidden states of the neural network are reused
recursively to learn the appropriate time-series features of a sequence
pattern. It is well known that RNNs suffer from training difficulty
due to exploding/vanishing gradients where gradients propagated
through the network either amplifies or attenuates with each itera-
tion, resulting in instability since large changes are made to the hid-

Fig. 1. Proposed architecture.

den states. LSTMs address this issue by using three control gates
(input, output, forget gates), to create a gradient-neutral hidden state
for the network where the determinant of its gradients for the hidden
cell is bounded.

Covariate layer: To include the psychometric measures, the
measures are z-normalized and fed to a fully-connected layer, of
which the outputs of the layer are concatenated to the last hidden
state of the LSTM cell. The concatenated vector then forms the hid-
den representation of the conditional probability of the prediction
task where a final fully-connected layer performs the prediction. The
architecture is illustrated in Fig. 1.

3. DATA COLLECTION

Data is collected from an undergraduate level DSP course cover-
ing topics such as linear time-invariant systems, Fourier transforms
and basic filter properties and designs. The course is taught over 13
teaching weeks using flipped-classroom pedagogy. Each week stu-
dents are required to prepare for the class through a set of online
learning materials and thereafter expected to participate in a tuto-
rial where a quiz will be administered at the start of the class to
assess students readiness levels. Instructors then facilitate a discus-
sion to clarify and reinforce relevant topics. The learning materials
are hosted through the online LAMS learning management system
where a linear sequence for each set of content content can be admin-
istered weekly. These materials consist of video lectures, interactive
media contents, multiple-choice practice questions, open-ended re-
sponse questions as well as forum discussions. The practice ques-
tions are optional and students are prompted to switch over from
the content sequence to perform the practice questions when they
reached a checkpoint. They may proceed with the learning materi-
als first without performing the practice tasks. These practices only
serve as a self-monitoring tool and students are conveyed that this
will not affect their course outcome. In the 4th and 6th weeks of the
course, students have an optional hands-on class for MATLAB in
place of the tutorial and therefore do not have the in-class quiz. On
the 7th week, there is mid-term assessment to assess the content that
has been covered thus far. This quiz will contribute to the students
course outcome.

The data is collected over the first six weeks of the course in
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the form of transaction logs where the system records how students
interact with the video lecture resources and practice questions to
prepare for their weekly tutorials. At the beginning of the course,
we also requested students to perform a 44-items questionnaire eval-
uating 6 personality traits. The traits have been validated with the
study population. The list of clickstream actions and psychometric
attributes can be found in Table 1. A total of 148 students partici-
pated in this study.

Content
Type

Type of information collected

Video Start, Pause, Resume, End video, End ac-
tivity, Fast-forward, Enter Fullscreen, Exit
Fullscreen, Speed up, Speed down

Multiple-
choice
Question

Select choice, Edit choice, Submit answers

Personality
Traits

Grit [16], Theory of intelligence [17],
Academic Bouyancy [18], Performance-
approach goals, Performance-avoidance
goals, Mastery goals [19]

Table 1. List of input features.

3.1. Validity of performance scores

A visual analysis of student performance on the online LAMS prac-
tice questions in Fig. 2 shows that while there are variations in scores
during earlier practice questions, majority of the students are answer-
ing the online practices perfectly after the 8th checkpoint. This is
consistent with commonly observed online settings where questions
are delivered immediately after the relevant content. These multiple-
choice questions (MCQ) are often intended to serve as a monitoring
mechanism rather than an assessment of ones knowledge and there-
fore are of relatively low complexity and specificity. Metrics derived
from these assessments do not correlate well with individual knowl-
edge mastery and also do not have sufficient statistical variation to
make predictive task meaningful. On the other hand, questions posed
in the weekly in-class quiz before the tutorial consist mainly of ap-
plication questions and students are required to pen down the steps
involved within a limited time frame. These weekly in-class quizzes
posed sufficient complexity and difficulty to generate varied perfor-
mance results as illustrated in Fig. 3 and are therefore chosen as our
prediction metric to evaluate student knowledge levels. Information
on how students prepare for the tutorial is explicitly captured in the
data for the first 4 weekly in-class quizzes and the mid-term assess-
ment. For students who missed their tutorials, they do not have their
weekly quiz scores for the week and these missing values are as-
signed the cohort average for that week. The average is chosen in
lieu of zeroing the scores to minimize the impact on the distribution
of scores.

4. EXPERIMENTS

In this comparison analysis, two variants of sequence-based meth-
ods and two variants of frequency-based models are employed for
the data when all past weekly preparations are considered. Under
the category of frequency-based models, 1) a multi-layer perceptron
(MLP) with 3 hidden layers each with 100 hidden nodes and tanh ac-
tivation functions and 2) convolutional neural network (CNN) with

Fig. 2. Distribution of scores for online practice questions.

Fig. 3. Distribution of scores for in-class readiness assessment.

three layers of 500, 300, and 100 feature maps with 3×3 filters con-
volution layers are considered. For compactness, the MLP method
is denoted as F1 and CNN method as F2. As the sequence-based
models, we employed four LSTM based network structures for fore-
casting the students performance. The LSTM models, denoted as
S1, S2, S3, S4, have 100 hidden dimensions each. For S1 and S3,
the input layer consists of a 50-dimension auto-encoding layer while
S2 and S4 each has a 50-dimension embedding layer for its input
layer. For S3 and S4, a convolution layer of thirty-two 7 × 7 fil-
ters are applied on the input layer before passing the outputs to the
LSTM cells. All the models are implemented in Tensorflow and are
trained using a 60/20/20% data partition for training, validation, and
testing sets, respectively. All the models are trained for 350 epochs
or stopped when the validation losses start to diverge from train-
ing losses. The performances of the models are evaluated using the
root-mean-squared errors of the weekly score prediction errors of the
testing dataset.

4.1. Impact of feature extraction for sequence input

In this work, auto-encoding and embedding layers are chosen to ex-
tract features from the raw input sequences in the sequence-based
models. Fundamentally these two processes learn through different
mechanisms. The auto-encoding layer learns to reconstruct its in-
put by reducing the entropy of the auto-encoder for the required task
instead of random initialization, and subsequently trains the learnt
feature set for the forecasting task at hand. The embedding layer,
on the other hand, learns through complete random permutation and
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Data Type Model Training
Loss
(RMSE)

Validation
Loss
(RMSE)

Testing
Loss
(RMSE)

Single-
week
frequency-
based

F1 0.269 0.250/ 0.250/
0.223 0.219 0.305

Single-
week
sequence-
based

S1 0.129/ 0.408/ 0.331/
0.117 0.453 0.232

S2 0.158/ 0.569/ 0.342/
0.179 0.505 0.235

S3 0.0870/ 0.401/ 0.331/
0.113 0.432 0.224

S4 0.212/ 0.361/ 0.285/
0.136 0.434 0.237

Full-
history
frequency-
based

F1 0.968/ 1.052/ 1.069/
1.071 1.181 1.248

F2 0.0345/ 0.382/ 0.323/
0.0272 0.328 0.243

Full-
history
sequence-
based

S1 0.0345/ 0.382/ 0.323/
0.0272 0.328 0.243

S2 0.0347/ 0.299/ 0.311/
0.0345 0.328 0.227

S3 0.0117/ 0.276/ 0.304/
0.0404 0.300 0.223

S4 0.0281/ 0.312/ 0.307/
0.0291 0.312 0.251

Table 2. Score predictions without/with the use of psychometric
covariates.

updates from gradient descent based on an objective function error
rate. The two methods are expected to extract slightly different fea-
tures, but they do not have significant impact on the models perfor-
mances. The training errors for auto-encoding layer models (S2 and
S4) are lower than embedding layer models (S1 and S3) but gener-
alize better with unseen data compared to the latter. For complete-
ness, we report that embedding layer models achieved testing RMSE
as small as 0.331 and 0.304 for single-week based and full-history
based sequence forecasting models, respectively. We observed sim-
ilar trend regardless of whether psychometric covariates are consid-
ered in the input feature. However, models with psychometric mea-
sures achieved better performance compared to the models without
those measures, as depicted in Table 2. From these results, we in-
fer that although the online learning sequences do not have a single
distribution all the time, the proposed architecture with covariates at-
tempts to learn the underlying patterns effectively and yielded better
forecasting performance.

4.2. Impact of observation period on forecasting performance

Frequency-based model performances are adversely affected when
the period of consideration is extended. One of the possible reasons
could be due to the input feature set distribution collapsing into a
unitary mode. Specifically, when the preparation history is aggre-
gated, the model no longer differentiates students with consistent
efforts from those who sporadically spend much time on online ma-
terials to catch up with the curriculum. The only information left

that the model could utilize is to predict performance scores based
on whether students prepared for class. Most of the sequence-based
models, however, show improvement in the prediction error. For
single-week based experiments, RMSE of 0.285 and 0.250 are ob-
tained with sequence-based models and frequency-based models, re-
spectively, whereas in full-history based methods the improvement
is significant - the RMSE is 0.304 with sequence-based methods and
0.328 with frequency-based methods, as shown in Table 2. The use
of sequences rather than frequencies meant that continuous evalu-
ation is possible at any instance rather than checkpoints along the
curriculum. With the obtained forecasting performance, educators
can provide just-in-time help to students that requires their atten-
tion while challenging students who are performing well to go be-
yond the curriculum in order to achieve higher metacognitive skills
by generalizing knowledge obtained into other applicable domains.
With sufficient modes of delivery, personalized learning can also
be achieved by evaluating how students react to different types of
media. Students may not always follow strictly to the curriculum
timeline. When models are provided with the raw information dur-
ing training, they can identify some of these irregularities as non-
disruptive behaviours towards the individuals performance. The im-
pact of different sequence nuances on the performance is outside the
scope of the paper.

4.3. Impact of psychometric covariates for sequence-based
models

Sequences can exhibit many varieties, some with the same given
outcome. We hypothesized earlier that some of the psychometric
measures could serve as covariates to assist models in identifying
important nuances in the sequences leading to better prediction per-
formances. Indeed, most of the models other than F1 performed
better with the inclusion of the psychometric measures, as shown in
Table 2. The covariates are chosen to cover a broad spectrum of stu-
dents describing how they are driven by their motivation and goals.
Results further highlighted that the existence of covariates helped in
reducing the input feature redundancy and thus any method with co-
variates yielded less RMSE compared to the models without covari-
ates. It can be seen from our results that the sequence-based models,
irrespective of auto-encoding or embedding, utilize the information
obtained with psychometric measures achieve higher prediction per-
formances compared to the frequency-based methods.

5. CONCLUSION

We analyzed the forecasting performance of frequency-based mod-
els to evaluate learning efficacy of a digital signal processing course
in an online environment. We also demonstrated that aggregation of
features resulted in a loss of information that could be diagnostic of
learning. We hypothesized that nuances in the learning pathways are
important in identifying learning outcomes of individuals. In this
aspect, we demonstrated that models learnt through the complete
sequences tend to perform better than frequency-based models. Fur-
thermore, we have shown that psychometric covariates contain in-
formation crucial for the identification of semantics of the nuances
in the learning sequences. While the use of sequence-based models
and psychometric covariates show promising results, the accuracy of
these models have the potential to improve the learning and teaching
procedures for DSP courses.
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