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Abstract—We investigate the problem of distributed networked
storage with compressive sensing in wireless sensor networks, and
a compressive storage scheme for local data query is proposed.
Specifically, we propose a simple but efficient one-step data
dissemination strategy, and the dissemination cost is reduced
dramatically. We further present a lazy-encoding algorithm,
using which the local data are capable of being reconstructed
without recovering the global data field if not necessary. Thus
the decoding ratio decreases significantly. Experiments using real
sensor data show that the proposed scheme achieves far better
local data recovery performance compared to the existing ones.
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I. INTRODUCTION

Networked systems, such as wireless sensor networks
(WSNs) or internet of things (IoT), can involve thousands of
independent nodes including sensors, RFID tags, or mobile
phone, which are all capable of generating and communicating
data [1, 6]. In certain network deployments, one or multiple
powered sinks exist, allowing network nodes to send their
sensed data to the sink via a routing protocol. However, in
remote geographical regions, it may be impractical to deploy
static sinks and nodes are required to temporarily store their
readings before a mobile sink, such as an unmanned aerial
vehicle, visits the network and gathers the data. Since network
nodes are energy-constrained and prone to failures, it is critical
to energy-efficiently store sensor readings in the network so
that the mobile sink can recover the original data field by
visiting a portion of nodes at any time.

Data Storage for a WSN with n sensor nodes can be
compactly represented as y = ϕx where y is an m × 1
vector of stored data, x is n× 1 sensor readings and ϕ is an
m× n measurement matrix with entries corresponding to the
readings that have been combined in the storage nodes [7].
Compressive sensing (CS) [8, 16], an emerging signal sam-
pling approach, can naturally serve as a possible solution to the
data storage problem for networked systems. Indeed, a number
of approaches applying CS theory to distributed networked
data storage systems have been introduced [9, 10, 12–15, 19].
Specifically, in [14, 15], a data dissemination algorithm, called
CStorage, is presented for WSNs. CStorage takes advantage
of the topology information to select the optimal forwarding
nodes, avoiding redundant data transmission related to broad-
cast. Combing a Metropolis-Hastings random walk algorithm,

This work has been supported by the NSFC under Grant No. 61672221.

the authors in [12, 13] propose a distributed CS data storage
approach in WSNs. During their encoding process, each node
ejects a number of random walks, and the lengthes are set to be
sufficiently long for the probability distribution to reach the e-
quilibrium. Generally, these approaches introduce various data
disseminating strategies to construct CS measurement matrix,
aiming to recover the data field in the entire network. Unfor-
tunately, to recover the global data field, existing approaches
require the dissemination of sensor readings throughout the
network. This can potentially introduce long convergence time
and excessive energy consumption.

At the same time, we note that in the applications of
WSNs, users may only need to query relevant regions where
monitoring events may occur, and recovering the global data
field is actually not necessary. We also note that the movement
of the mobile sink can be utilized to generate CS measurement,
and sensor readings do not have to be disseminated in the
entire network. Our goal hence is to design a compressive
data storage strategy with significantly lower dissemination
cost while achieving high local data recovery accuracy. Our
contributions of the paper are summarized below.

(1) We propose a lazy-encoding algorithm, enabling recov-
ery of a local data field without recovering the global field
if not necessary. We show this can significantly reduce the
decoding ratio, and thus greatly decrease the number of sensor
nodes needed to be queried by the mobile sink.

(2) We present a data dissemination strategy with one
step without disseminate readings throughout the networks,
and thus dissemination cost declines dramatically. We further
provide its mathematical foundation.

The remainder of this paper is organized as follows. Section
II describes the proposed compressive networked data stor-
age scheme. Section III provides the theoretical analyse and
Section IV demonstrates its effectiveness through simulations.
Finally, we conclude the paper in Section V.

II. COMPRESSIVE NETWORKED DATA STORAGE SCHEME

In this section, we introduce a compressive networked data
storage (CNDS) scheme. We first present a data dissemination
strategy with one step, then propose a lazy-encoding algorith-
m. After that, we make a brief discussion.

A. Data dissemination with one step

Given a sensor si as the source node, the next nodes
are chosen from its neighbors in the reading dissemination
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process. We note that, different from the existing approaches
[9, 10, 12–15, 19], the neighbor nodes that received the reading
of si no longer further forward it. That is to say, data are
disseminated only with one step, and do not have to be
disseminated in the entire network.

We further design a data packet, denoted by spi for node
si (0 ≤ i ≤ n− 1), to store the reading received. spi has two
independent components, where the first component spi{0}
contains the original reading xi and the second one spi{1} is
the corresponding index si.

When node si receives a reading xj from one of its
neighbors sj , it stores the received reading by updating its
own spi as following

spi :

{
spi{0} = spi{0} ∪ {xj}
spi{1} = spi{1} ∪ {sj}

(1)

Our one-step data dissemination strategy is very simple but
efficient. All neighbor nodes hold the information of si, and it
makes our storage scheme be reliable and have fault-tolerant
guarantee. Moreover, the proposed one-step dissemination
strategy is capable of generating a measurement matrix with
desired property, serving the successful data recovery.

B. Lazy-encoding algorithm

When a reading is received by sensor node si, we do not
perform encoding operation right away. Instead, the reading
is temporarily stored in spi . CS encoding is performed only
when si receives a query instruction from a mobile sink. This
is the reason that it is termed lazy-encoding.

1) Determining which data involve in encoding process:
Suppose that r nodes are deployed in a local region Re in a
WSN with n nodes, and node si is queried by a mobile sink.
Let those r nodes form a node subset R.

Once a node si (si ∈ M) receives the query instruction
from the mobile sink, it has to determine which data in its
stored data packet spi should be involved in the encoding
process. si checks the spi to find out which data have been
included in spi{0}. We note that not all those nodes in
spi{0} participate in the encoding process. Only the data
corresponding to node set NSi are encoded by node si, where
NSi is

NSi = spi{0} ∩ R (2)

If the mobile sink queries the entire network, that is, |R|0 =
r = n, then NSi = spi{0} ∩ R = spi{0}. In this case,
all of data in spi will be encoded, and our lazy-encoding is
simplified into a general encoding algorithm.

Fig. 1 illustrates our idea with a simple example. The
mobile sink has to query the data field in the round re-
gion with dotted line, which is monitored by the node set
R = {s2, s3, s4, s8, s9, s10, s15}. The reading x15 is sent
to its neighbors and s15 receives the readings disseminated
from those neighbor nodes. Therefore we have sp15{0} =
[x8, x10, x13, x14, x15, x16]. The sink randomly queries a part
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Fig. 1: A simple example. s15 has 5 neighbor nodes: s8, s10,
s13, s14 and s16. The circle with dotted line represents a local
region queried by a mobile sink, which randomly selects s3,
s9, and s15 to gather CS measurements.

of nodes in the local region, and node s15 are assumed to be
included. Then,

NS15 = sp15{0} ∩ R = {s8, s10, s15}

2) Generating a measurement matrix: We assume that
NSi = {si, sj , sk, sl} and use it as an example. Accordingly,
si generates four CS measurement coefficients, denoted by
ϕi,i, ϕi,j , ϕi,k and ϕi,l, respectively.

Those coefficients are randomly selected from {−1,+1}
with equal probabilities or randomly generated with N (0,1),
where N (0,1) is the zero mean and unit variance Gaussian dis-
tribution. Using those coefficients, si generates a measurement
vector ϕi as following

ϕi =
1√
m

(
0 ϕi,i 0 ϕi,j 0 ϕi,k 0 ϕi,l 0

)
(3)

where m is the number of nodes queried by the mobile sink.
Factor 1/

√
m will be used for obeying the mutual coherence

property between ϕ and a sparse basis ψ. The length of ϕi
is r because there are r nodes or r data in the region. The
numbers of zero in ϕi are i, j − i + 1, k − j + 1, l − k + 1
and r − l + 1, respectively.

The mobile sink randomly queries m nodes in the re-
gion, which generate their own measurement vectors, respec-
tively. Those m vectors form a measurement matrix ϕ =
(ϕ0, ϕ1, . . . , ϕm−1)

T .
3) Encoding: For node si, it computes its measurement

using the measurement vector ϕi as yi = ϕix, where x =
(x0, x1, · · · , xr−1)

T . In this way, all r data in the region, not
merely xi, xj , xk and xl, are encoded as a CS measurement
yi. In other words, yi includes all the information of those
r readings. m nodes that have received the query instruction
independently compute their own measurements, respectively.
Therefore, the encoding process in the region is expressed as
the following formula

y = ϕx (4)

where y = (y0, y1, · · · , ym−1)
T and ϕ is the corresponding

measurement matrix.
When the m measurements y0, y1, · · · , ym−1 are received

by the mobile sink, it performs decoding and reconstructs the
original data field x = (x0, x1, · · · , xr−1) in this local region.

6444



Let ψ be an orthogonal basis and α = ψ−1x. Then x = ψα,
and y = ϕx = ϕψα = Φα, where Φ = ϕψ. Therefore the
original x can be reconstructed by solving the following l1-
norm problem

min ∥ α ∥1, s.t. y = Φα (5)

A number of CS reconstruction algorithms, such as basis
pursuit [5], orthogonal matching pursuit [18], and iterative
thresholding [11], have been introduced to solve the above
mentioned l1 norm minimization equation.

C. Discussion

In this section, we exploit a strategy, called lazy-encoding
algorithm, to recover local data. To encode the data field in
a region, a sensor node has to temporarily store the readings
disseminated from other nodes, and this incurs extra storage
overhead. Fortunately, in our scheme, sensor readings do
not have to be disseminated in the entire network, and the
storage spending is very limited, thanks to the proposed one-
step dissemination strategy. Indeed, each node only needs to
temporarily store the readings from its neighbor nodes.

In the proposed CNDS scheme, m nodes in a local re-
gion are randomly queried to gather data with the help of
the movement of the mobile sink. At the same time, each
node independently generates the coefficients of measurement
matrix ϕ. In the following section, we are going to show that,
it is the randomness and the independence property that serve
the necessary condition of successful data recovery.

III. THEORETICAL ANALYSIS

In this section, we first show that our CNDS scheme satisfies
the conditions of successful CS recovery. Then we evaluate its
dissemination cost.

The restricted isotropy property (RIP) is considered as
the necessary condition for successful CS reconstruction for
sparse or compressible signal [3, 8]. Authors in [4] propose
an alternative mechanism to relax the RIP condition, and
prove that the measurement matrix with the isotropy property
and the incoherence property are capable of guaranteeing the
successful CS reconstruction [4].

Theorem III.1. Suppose that an n-length x is a sensing data
set and it is sparse in an n×n orthogonal basis ψ. x is stored
in a WSN with n nodes by the proposed one-step dissemination
strategy. A mobile sink randomly queries m nodes in a region
in the WSN, and the corresponding m×n measurement matrix
ϕ is generated by the proposed lazy-encoding algorithm. Let
Φ = ϕψ. Then the matrix Φ holds both the isotropy property
and the incoherence property.

Proof. Denote ϕi and ϕj as the ith and the jth column vectors
in ϕ, respectively. In the lazy-encoding process, the entries in
ϕi and ϕj are independently generated by m nodes that locate
in the dissemination area of the readings originating from node
si and sj , respectively. At the same time, m nodes are ran-
domly selected by the mobile sink. Therefore ϕi is irrelevant
from ϕj . Furthermore, the entries in ϕi and ϕj are randomly

generated from selected from {−1,+1} or with Gaussian
distribution. Thus E(ϕTi ϕj) = 0, j ̸= i and E(ϕTi ϕi) = 1,
where E(·) denotes the mathematical expectation. Therefore
we have ϕϕT = In. Then E(ΦTΦ) = E((ϕψ)T (ϕψ)) =
E(ψTϕTϕψ) = In, since ψ is an orthogonal transform basis.
It has been illustrated in [4] that an m× n matrix X satisfies
the isotropy property if and only if E(XTX) = In. So our
matrix Φ holds the isotropy property.

Let Φij be the entry on the ith row and jth column in Φ.
Then coherence measure µ(Φ) can be expressed as µ(Φ) =

maxi,j

∣∣∣∣∑n
k=1 ϕikψkj

∣∣∣∣. The entry ϕik is generated by node

si. If the reading originating from sk is received by si, then
si assigns a random coefficient to ϕik. Otherwise ϕik is set
to 0. Therefore ϕ is an entirely random sparse matrix, since
readings are disseminated with only one step. According to
[2, 3], any fixed basis is incoherent with a random matrix with
a high probability. Therefore ϕ and ψ have very low mutual
coherence measure. i.e., µ(ϕψ) < c. Here, c is some positive
numerical constant. Hence Φ obeys the incoherence property.

We assume that each data transmission from a node to
its neighbor node has the same energy consumption, i.e.,
the data dissemination cost is proportional to the number of
data transmission. Suppose that node si has li neighbors in a
WSN with n nodes. It is clear that the global dissemination
complexity is O(n2). However, for our one-step dissemination
strategy, the dissemination cost of a reading is

∑n−1
i=0 li,

and the complexity is only O(n), since li is a constant.
Therefore our scheme can guarantee successful data recovery
with significantly lower dissemination cost.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
CNDS scheme and compare it with the classical CStorage [15]
and the random walk based CDP approach [13].

A. Parameter settings

The simulated WSN consists of n nodes, covering an area
of V units. Each sensor node is responsible for sensing,
forwarding and storing environmental data, which are real
data from the sea surface temperatures data set [17]. The
communication radius of a sensor node R satisfies R2 =
CV log n/n where C is a positive constant. The decoding
ratio is set as the ratio of the number of measurements
m and the number of nodes n, i.e., m/n. Discrete cosine
transform is used as the sparse transform on sensing data
field. The coefficients in the measurement matrix are randomly
selected from {+1,−1} with equal probabilities. We use
e(x, x′) = ∥x−x′∥2

∥x∥2
to evaluate the data reconstruction quality

where x and x′ represent the original and recovered sensing
readings, respectively. Obviously, the smaller e is, the better
the reconstruction quality is. In the simulation, we say one
reconstruction is successful if e(x, x′) < 0.09. All results
are carried out from a laptop platform with a CPU @ 2.5
GHz of Intel(R) Core (TM) i5-7300HQ using the MATLAB
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(b) A region with 225 nodes

Fig. 2: The probabilities of successful local data recovery.

R2015b simulator. Basis pursuit (BP) algorithm [5] is used to
reconstruct the original data.

B. Results and analysis

1) Recovering the local data fields: In this subsection,
we evaluate the performance of the proposed CNDS strategy
by recovering the data fields in specific local regions, and
compare them with the existing approaches. In CDP, the
random walk instances are fixed at 30, and the random walk
step is set to 20. For CStorage, the forwarding probability is set
to 0.24 and the number of source nodes is 600. We select those
parameters because they obtain almost the best performance
in the corresponding approaches.

Here we perform 100 repeated simulations. The probabil-
ities of successful reconstruction along with the increasing
of the number of measurements are shown in Fig. 2. The
results of recovery accuracy are illustrated in Fig. 3. It is
clear that our scheme has far better performances than the
existing ones. The decoding ratio decreases significantly with
the same recovery probability or accuracy. In other words,
the number of sensor nodes that need to be queried by
mobile sink for recovering original data in the corresponding
regions is reduced significantly. This is because our lazy-
coding algorithm does not compute the measurements until
the mobile sink launches the query instruction. In this way,
we are capable of only encoding the information in the region
queried by the sink, and the data fields in the specific local
regions can be reconstructed separately without recovering the
global data field. This is further illustrated by the experimental
finding of “No lazy-encoding” that is our version without lazy-
encoding process.

2) Recovering the global data field: This subsection eval-
uates the performance of our scheme when recovering the
global data. The parameter setting is the same as the above
subsection. The reconstruction error and the probability of
successful recovery are shown in Fig. 4. The experimental
results that the proposed CNDS can also recover the whole
data field in the network without deceasing the accuracy.

As we illustrate in section I, different dissemination s-
trategies in distributed data storage approaches will generate
different measurement matrixes. Theoretically, the measure-
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Fig. 3: The reconstruction error for local regions.
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Fig. 4: The global data recovery performances.

ment matrixes with better properties have better data recovery
performance. However, as shown in Fig. 4, the performance
gains of the existing approaches by carefully designing dis-
semination strategy are approximately the same in the context
of the networked storage. Our scheme with one-step dissemi-
nation also has about the same reconstruction probability and
accuracy. Although readings are disseminated with only one
step, the movement of the mobile sink can be utilized to
randomly and uniformly select nodes being queried, and thus
the measurement matrix generated by our CNDS scheme can
satisfy the isotropy property and the incoherence property that
guarantee the data recovery performance.

V. CONCLUSION

In this paper, we exploit the data storage problem in
networked systems, a compressive data storage scheme with
lazy-encoding, called CNDS, is proposed. CNDS utilizes the
lazy-encoding algorithm to compute measurements, and local
data fields are thus capable of being recovered by querying
far less sensor nodes. The energy cost of the proposed one-
step disseminating process decreases significantly since the
sensor readings do not have to be disseminated throughout
the network. Theoretically and experimentally, for local data
fields, our proposed CNDS scheme has far better recovery
performance. At the same time, our scheme can recover the
global data field as well if necessary, without decreasing
accuracy.
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