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ABSTRACT

Energy-efficient data aggregation is a challenging problem in

asynchronous wireless sensor networks. Asynchronous behaviour

of sensor nodes is generally due to adaptive duty cycling and it leads

to information loss, buffer overflow and poor quality of services. To

overcome these issues, a joint mobile sink scheduling and data ag-

gregation scheme is proposed in this work. A reinforcement learning

framework is developed herein for budgeting the energy of mobile

sink while minimizing the information loss in each cluster of a clus-

tered WSN. More specifically, a Q-learning approach is used to learn

the network behaviour over time and compute adaptive halt-times for

the mobile sink based on active number of nodes in each cluster. Ex-

periments on joint mobile sink scheduling and data aggregation are

conducted on a medium scale WSN. Experimental results indicate

that proposed method minimizes the information loss in an asyn-

chronous wireless sensor network. It is also observed that mobile

sink performs the data gathering operation with limited energy con-

sumption while maximizing network lifetime.

Index Terms— Data Aggregation, Mobile Sink Scheduling, Re-

inforcement Learning, Wireless Sensor Networks

1. INTRODUCTION

Wireless Sensor Networks (WSNs), the backbone of ’Internet of

Things’ is being empowered by autonomous and intelligent devices

[1, 2]. However, network lifetime is a major concern in the devel-

opment of resilient and reliable sensor networks [3, 4]. In general,

the energy-efficiency in WSNs can be accomplished using various

approaches like clustering of nodes, mobile sink deployment, in-

network data aggregation, routing, adaptive duty cycling and many

more [5–7]. These schemes are also used in cooperative ways to

improve the network performance further [8]. However, schedul-

ing the mobile sink in an asynchronous WSN is very challenging

because the number of active nodes vary with time. In this situa-

tion, energy-efficient data aggregation and mobile sink scheduling

becomes very challenging [9]. Therefore, scheduling of mobile sink

should be adaptive in accordance with asynchronous behaviour of

the network. For ease of mobile sink scheduling, the network can

be partitioned into a number of clusters [8]. Mobile sink traverses

the whole network via clusters and associated way-points to collect

the data from sensor nodes. The halt-time or time for mobile sink

to stay in a cluster depends on total number of nodes in that cluster.

In a well synchronized and clustered WSN, mobile sink can be pro-

vided with a fixed halt-time per cluster. However, in asynchronous

and clustered network, fixed halt-time of mobile sink in a cluster
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leads to information loss, buffer overflow and poor quality of ser-

vices. Hence, an intelligent mobile sink scheduling is required in

this type of network scenario.

In this work, a method for joint mobile sink scheduling and data

aggregation is proposed using reinforcement learning. In the pro-

posed method, a reinforcement learning based framework is used for

mobile sink scheduling. Mobile sink will learn the asynchronous be-

haviour of the network while simultaneously performing the data ag-

gregation process. The traversing order of clusters is decided based

on minimum tour length of mobile sink in the network. Therefore,

with a limited energy consumption, mobile sink covers the whole

network assuring minimum information loss in every cluster. The

adaptive halt-time of mobile sink in each cluster plays a key role

here. The variation in halt-time in a cluster depends on the number

of active nodes in that cluster, residual energy of the mobile sink and

the information loss in the network. Based on the current state of the

network, mobile sink decides whether to move to next cluster or stay

in present cluster.

The proposed method utilizes various advantages of clustering,

mobile sink and asynchronous behaviour of nodes in maximizing the

energy-efficiency. Hence, the proposed joint mobile sink scheduling

and data aggregation prolongs the network lifetime while minimiz-

ing the information loss. The contributions of this paper are as fol-

lows. A deep reinforcement learning framework is implemented to

model an intelligent mobile sink for wireless sensor networks. A co-

operative and energy-efficient data gathering approach is proposed

utilizing the strengths of clustering, mobile sink and asynchronous

behaviour of the sensor nodes. Intelligent mobile sink scheduling is

used to minimize the information loss in the network.

The rest of the paper is organized as follows. Section 2 presents

the network model and problem definition. Design and implemen-

tation of intelligent mobile sink is presented in Section 3. The per-

formance evaluation is presented in Section 4. Finally, the work is

concluded in Section 5.

2. NETWORK MODEL AND PROBLEM DEFINITION

The network consists of a large number of sensor nodes that func-

tion based on an adaptive duty cycling algorithm [7]. The network

is divided into a number of clusters. In the presence of mobile sink,

all nodes of a cluster can transmit data to it. The network assumed

with uneven distribution of nodes on the field may have different

number of nodes in each cluster. A mobile sink is deployed in this

clustered and asynchronous network for energy-efficient data gath-

ering. Mobile sink traverses the whole network via clusters and their

way-points. All the nodes in a cluster are single-hop away from the

mobile sink present on the way-point of that cluster. An example of

energy-efficient data collection scheme utilizing intelligent mobile

sink is shown in Figure 1. Mobile sink stays in every cluster with
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Fig. 1. Illustration of energy-efficient data collection scheme over

clustered, asynchronous WSN. An adaptive halt-time (tH) is as-

signed to each cluster.

different halt-time(tH). The adaptive halt-time of mobile sink at any

way-point depends on the active number of nodes in the present clus-

ter.

2.1. Problem Definition

Given a wireless sensor network W (N,C) with total number of

nodes N and partitioned into C number of clusters. A mobile sink

is deployed in the clustered and unknown asynchronous behavioured

network with total energy ETms. Hence, mobile sink budgets its resid-

ual energy among all clusters depending on the number of active

nodes in the present cluster and the active nodes expected to be en-

countered in the future. The problem is how to jointly schedule the

mobile sink and aggregate data so that mobile sink can decide the

halt-time adaptively to each cluster according to the network condi-

tions. Hence, the problem can be formulated as

min f
(

ECTnetwork, I
T
loss

)

subject to

(Nc,Wc) ∈ Γw for c = 1, 2, 3, ..., C

{ni | Hl(Wc, ni) = 1} ∈ Nc (i)

Etour ≤ E
T
ms (ii)

EC(c) ≤ B · Ac · Eelec (iii)

tH(c) =
B · Ac

Rr

(iv)

(1)

where ECTnetwork is total energy consumption in the network. ITloss
is the total information loss in the network. Each cluster Nc with

a way-point Wc is a part of the trajectory Γw for a mobile sink.

Clusters are maintained in such a way that its way-point is one-hop

away from every node ni of that cluster. H defines the hop-length

between two nodes on a graph or network. Energy consumed in a

tour or round Etour by the mobile sink is constrained to be less than

the total available energy ETms. The energy consumption EC(c) in

a cth cluster depends on the the memory buffer size of each sensor

node B and the number of active nodes Ac in that cluster.. Eelec is

the energy consumed in receiving one packet of information. The

halt-time tH for each cluster is adaptive depending on the number

of active nodes. Hence, tH(c) of a cluster is ratio of the amount of

information to be received and the reception rate of the mobile sink

Rr. The various constraints given in equation 1 helps in developing

the intelligent mobile sink. The constraint (i) bounds the movement

of mobile sink to the fixed way-points. The energy consumption

in every tour is limited by constraint (ii). Adaptive halt-time and

managing with residual energy of the mobile sink is dealt with con-

strains (iii) and (iv). Energy consumption and information loss for

the proposed network model are defined as follows.

Energy Consumption, ECTnetwork : It is the sum of energy con-

sumed by mobile sink and the sensor nodes. Hence, the minimiza-

tion of ECnetwork results in efficient utilization of mobile sink as

well as prolonged network lifetime.

ECTnetwork = ECms + ECnodes (2)

where ECms, ECnodes are the energy consumption by mobile sink

and sensor nodes respectively.

Information Loss, ITloss : In a mobile sink equipped network,

it is the amount of information that was available but not collected

by mobile sink because of various issues like delay and the unavail-

ability of residual energy in mobile sink. Total information loss in a

clustered network is sum of information loss in an individual cluster

and is given as

ITloss =

C∑

c=1

Iloss(c) (3)

where Iloss(c) is the information loss in cth cluster.

3. JOINT MOBILE SINK SCHEDULING AND DATA

AGGREGATION USING Q-LEARNING

The presence of asynchronous behaviour which is caused by an un-

known adaptive duty cycling protocol or inaccuracy in synchroniza-

tion protocols needs an adaptive scheduling for the mobile sink.

Hence, mobile sink is required to stop adaptively in each cluster

for collecting the information. In this way, an intelligent mobile

sink needs to be modelled. A reinforcement learning framework

helps in modelling an agent that learns from the environment and

acts smartly [10]. A deep reinforcement learning framework is mod-

elled for continuous controlling of robot in [11]. The state-action-

reward framework of reinforcement learning in modelling the intel-

ligent mobile sink is framed as follows.

State, St: For the given network model, the state St is defined in

terms of network conditions at time t which are: current cluster de-

tailsNc, Icleft(= I
c
total − I

c
collected) and the residual energy of the

mobile sink Ecms at that cluster. The information available initially at

cth cluster is Ictotal = B × Ac with B as the buffer size of the node

and Ac as the active nodes in the cluster. Therefore, each way-point

is associated with the state of its cluster, St = [Nc, I
c
left, E

c
ms].

Action, At: Based on the state St(c), a change in pre-associated

halt-time tH(c) of the cth cluster is decided. Therefore, the avail-

able actions are, At = {move, halt}. Whenever a halt action is

executed, the mobile sink collects data from the current cluster for

a pre-decided time interval tunit at the end of which, a new state is

reached. Thus the total halt-time tH(c) = n × tunit where n is the

number of halt actions taken at the cluster.

Reward, Rt+1: The reward which is the function of consequences

to an action taken, is defined in terms of the objectives or goals of

the problem. Therefore, it is defined as a function of energy con-

sumption and information loss. An increase in the reward should

indicate either a fall in the information loss or a fall in the energy

consumed or both. The formulation of this function is explained in

next subsection.
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Fig. 2. A state-action space model for joint mobile sink scheduling

and data aggregation.

3.1. Q-Learning Approach

The joint mobile sink scheduling and data aggregation decides the

optimal traversal of the graph formed by the clusters and stop time

at each waypoint according to the network conditions. To model

the adaptive scheduling of mobile sink, a Q-learning approach of

reinforcement learning is developed herein. In Q-learning, the value

Q(St, At) of an action At in St state at current time t is updated

based on the value of next state Q(St+1, At+1). The updated action

value can be given as

Q(St, At)← Q(St, At) + α[Rt+1

+ γmax
a

Q(St+1, a)−Q(St, At)]
(4)

where α is the step-size which assures the convergence of estimates

of future value function. γ is discount rate parameter (0 ≤ γ ≤ 1) by

which it determines the worth of future rewards with respect to the

present. However, since the number of possible states is considerable

(it is a 3-tuple), this approach needs to be augmented with neural

networks and deep learning in order to be implemented. Therefore,

for appropriate modelling, the proposed method uses the deep Q-

network (DQN) algorithm presented in [12].

3.1.1. Motivating the Reward

The reinforcement learning framework operates on the notion of the

favourable condition which is represented by a positive reward and

the unfavourable conditon that warrants a negative reward. In our

context, a favourable condition is when the usage of energy is op-

timized with the collection of information. Before formulating the

reward, a function that will model the desire of proposed model be-

haviour is defined as

f = b1 · (I
c
left/I

c
total)

︸ ︷︷ ︸

NIL

+ b2 · (E
c
ms/E

T
ms)

︸ ︷︷ ︸

NRE

(5)

where b1, b2 are scaling parameters. The first and second bracketed

terms respectively represent the normalized valued of the informa-

tion loss (NIL) (should the sink were to move) and the normalized

residual energy (NRE). We proceed to model the desired behaviour

by following an intuitive policy presented in Table 1.

3.1.2. Reward Formulation

Table 1 shows that a high value of the function f is good for halt

actions but is bad for move actions. Therefore, the instantaneous

Table 1. Intuitive Policy for Modelling Desired Behaviour

Action NIL NRE Function ’f ’ Condition

move

↑ ↑ Very High unfavourable

↓ ↑ High less unfavourable

↑ ↓ Low slightly favourable

↓ ↓ Very Low favourable

halt

↑ ↑ Very High favourable

↓ ↑ High slightly favourable

↑ ↓ Low unfavourable

↓ ↓ Very Low unfavourable

reward as a function of the state and the action taken is defined as:

Rt+1(St, At) =

{
+f − λ; At = halt

−f + λ; At = move
(6)

where λ is a tuning constant s.t. 0 ≤ λ ≤ (b1 + b2) and represents

the turning point on the function below which values start getting

favourable for move but unfavourable for halt. Hence, the reward

function formulated above, gives a positive value whenever the con-

dition grows favourable and returns negative values otherwise.

Consequently, maximizing the cumulative reward (
∑

t
Rt+1.)

will result in solving the problem defined in Section 2.

4. PERFORMANCE EVALUATION

In this section, performance evaluation of the proposed method of

joint mobile sink scheduling and data aggregation is presented. Im-

provements in energy-efficiency and information loss in an asyn-

chronous WSN are studied in detail.

4.1. Network Model and Parameters

A wireless sensor network with 520 nodes is deployed in the envi-

ronment. The network is assumed to be divided into 7 clusters with

different number of nodes, {60, 70, 80, 75, 70, 85, 80}. As the be-

haviour of the network is asynchronous, the active number of nodes

varies with time in each cluster. The asynchronous behaviour level

(uncertainty) is the measure of variance of active number of nodes

in the cluster which are sampled using a truncated Gaussian distri-

bution. The uncertainty bounds the upper and lower limits on active

number of nodes in a cluster. The list of hyperparameters used in

mobile sink scheduling is given in Table 2.

4.2. Mobile Sink Scheduling Analysis

The performance analysis of the modelled intelligent mobile sink is

presented in Figure 3. The reinforcement learning algorithm tries

to maximize the reward and in doing so minimizes information loss

ITloss and the energy consumed ECms as given in the problem defi-

nition. It can be clearly noted that after a certain number of episodes,

the mobile sink starts converging on a scheduling policy. The con-

vergence of cumulative reward is shown in Figure 3 (a). The total en-

ergy consumption of mobile sink ECms and information loss ITloss
of the network with uncertainty less than 10% is presented in Fig-

ure 3 (b) and (c) respectively. With the increase in uncertainty in the

network behaviour, total information loss increases and it takes more

time to converge as shown in Figure 3. However, mobile sink is still

capable of learning the environment with a penalty for information

loss.
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Table 2. Hyperparameters Values for Mobile Sink Scheduling

Parameters Value

Learning rate parameter, α 0.0001

Discount rate, γ 0.99

Batch size 20

Initial exploration 1

Exploration decay rate 0.0007

Final exploration 0.2
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Fig. 3. Mobile sink scheduling analysis: convergence of (a) Total

reward obtained by mobile sink after every episode (tour), (b) En-

ergy consumption (c) Information loss after each episode with the

asynchronous (uncertainty) behaviour level < 10%. The informa-

tion loss with high uncertainty (> 25%) is shown in fig (d).

4.3. Data Aggregation and Energy-Efficiency Analysis

In the proposed method, data aggregation and energy-efficiency is

improved using the advantages of single-hop clustering, intelligent

mobile sink scheduling and adaptive duty cycling of the network.

With an autonomous and intelligent mobile sink, active nodes of a

cluster transmit their data to the mobile sink when it reaches a par-

ticular cluster. Mobile sink covers the network with a limited energy

consumption and minimum information loss. For an asynchronous

WSN of 520 nodes, the information loss using a fixed amount of

energy for a trained mobile sink is presented in Figure 4. Figure 4

(a) shows the comparison of information loss using intelligent mo-

bile sink scheduling and conventional scheduling. The upper limit

on energy consumption of mobile sink is considered 36%. As this

limit is becoming stronger (28%) in Figure 4 (b), more information

loss occurs in conventional mobile sink sink scheduling. In conven-

tional sink scheduling scheme, halt-time of mobile sink is fixed for

each waypoint [13] which results in more information loss. The en-

ergy consumption analysis to achieve less than 5% information loss

in an asynchronous network is presented in Figure 5. It can be noted

that after an uncertainty level of 40%, mobile sink fails to achieve an

information loss less than 5%. However, it is successfully achieved

using the proposed intelligent mobile sink scheduling scheme.
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Fig. 4. Information loss analysis. (a) Comparison of informa-

tion loss using the proposed intelligent scheduling and conventional

scheduling with a maximum of 36% energy consumption of mobile

sink, (b) With a maximum of 28% of energy consumption in an asyn-

chronous network.
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Fig. 5. Energy consumption analysis. Comparison of energy con-

sumption using proposed sink scheduling and conventional schedul-

ing to achieve less than 5% information loss in an asynchronous net-

work.

5. CONCLUSION

In this work, we have proposed a method to develop a joint mo-

bile sink scheduling and data aggregation which learns the network

behaviour of asynchronous WSNs over the time. For this, a deep Q-

learning approach is used in the framework of asynchronous WSN. It

is noted that mobile sink reduces the information loss and improves

the network lifetime. Significant improvements are obtained for var-

ious uncertainty level of asynchronous behaviour. Performance eval-

uation shows that mobile sink is converging with the network be-

haviour after a fixed number of episodes. The obtained results are

motivating enough to bring the proposed method into practice of au-

tonomous ’Internet of Things’. Future work will focus on develop-

ing the learning framework for multiple mobile sink to improve the

energy-efficiency further.
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