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ABSTRACT

The two major roadblocks for state of the art Internet of
Things (IoT) infrastructure like smart buildings, smart cities,
etc. are lack of trust between various entities of system and
single point of failure which is a vulnerability causing ex-
treme damage to the whole system. This paper proposes a
blockchain based IoT security solution where, trust is es-
tablished through the immutable and decentralized nature of
blockchain. The distributed nature of blockchain makes the
system more robust and immune to single point of failure.
We propose a mechanism to establish continuous security in
the system by evaluating legitimate presence of user in valid
IoT-Zone continuously without user intervention. Every user
interaction in an IoT environment is stored in blockchain
as a transaction and series of these transactions represent a
user’s IoT-trail. A unique digital crypto-token is required for
a user interaction to be legitimate. This token is used as an
access control mechanism to prevent any unauthorized access
to the system. Tokens are pre-generated using a prediction
model based on user’s IoT-trail in the blockchain. By using
blockchain as an underlying framework in IoT environment
and through the method of continuous security, we made the
system more secure, robust and interoperable.

Index Terms— Internet of Things, blockchain, continu-
ous security, digital crypto-token

1. INTRODUCTION

Internet of Things (IoT) system is a complex environment
where multiple entities and devices interact with each other
[1]. The current system is a trust-dependent, centralized cloud
based model which limits the interoperability due to varying
configurations of multiple clouds and devices. Also the se-
curity mechanism in current infrastructure is only limited to
discrete security leaving many vulnerable entry/exit points in
IoT systems [2]. Due to involvement of multiple stakehold-
ers in IoT, it becomes essential to build trust-less, preventive,
decentralized and interoperable systems to make IoT systems
practical. Hence, the need to exploit blockchain’s inherent
characteristics is evident in future of IoT Infrastructure.

The immutable and distributed nature of blockchain [3]
brings legitimacy to any interaction in the IoT system. All
these interactions are stored as transactions which will fur-
ther be used in preventing any suspicious interactions. In this
paper we propose a framework which uses a crypto-token [4]
based blockchain to provide continuous security. A trans-
action in blockchain can represent various interactions like
movement of user between IoT-Zones (e.g. home, office,
etc.), secure transfer of data between devices and users, user-
device activity (e.g. access to office) in a smart city/building,
multiple organizations working in cohesion to provide im-
proved service to user (health data securely shared between
hospital and diagnostic centre), device to device activity etc
[5].

In this paper, we focus on the security of the user-device
interactions. The existing solutions for user authentication
primarily use One Time Password (OTP), passwords or static
security questions but are limited to one-time validity of cre-
dentials [6]. However legitimacy of path followed (transac-
tions done) prior to providing credentials can be used to es-
tablish much more confidence in user’s identity. This paper
is structured as follows. In section 2, the key concepts of our
solution are briefly introduced. In section 3, the methodol-
ogy for continuous security which contain details about zone-
identification, token generation and token validation is de-
scribed. Section 4 presents the simulation results and the
performance of the developed system and concludes with the
impact of our solution on IoT systems.

2. KEY CONCEPTS

2.1. Blockchain Infrastructure

An application has been built on top of Hyperledger Fab-
ric [7] framework to store every user-device interaction on
blockchain through a consensus of nodes. These interactions
are stored as transactions. A sequence of these transactions
define a user’s trail of user-device activities in the system. The
IoT system will not be compromised in the event of single
point failure [8] due to de-centralized nature of blockchain.
The IoT system may contain constrained devices which don’t
have enough computational power or the storage to be full
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nodes in blockchain network. Hence it is assumed that such
devices will be interacting through an IoT-hub which, being
an unconstrained device will act as a node in Blockchain net-
work.

2.2. Continuous Security

Along with PINs/Passwords wherever required, every inter-
action is also mediated via crypto-token which can only be
used by the legitimate user. The generation of crypto-token
depends on the current user state and user’s possible actions.
Token will not be generated in case of suspicious actions as
shown in Figure 1. This facilitates secure and seamless tran-
sitions between IoT-zones.

Fig. 1. High Level System Overview

3. METHOD FOR CONTINUOUS SECURITY

Continuous security is achieved primarily through IoT-Zone
identification, IoT-Token generation for next valid zones and
Token validation which are described in detail in following
sub-sections. A high level flow of these three ideas is captured
in Figure 2. The details of user’s trail which is used in these
ideas can be obtained by querying the blockchain.

3.1. IoT-Zone Identification

IoT-Zone identification needs active monitoring of user IoT-
trails. Initial topology of IoT-zone is established based on
physical connections (like swipe gates) between multiple
zones and set of rules as shown in Figure 3. Initially the state
transition probabilities are established through rule based
solution.

A learning based path prediction model is used to increase
user experience. In this case user’s transition in zones is mod-
eled as a random variable. The state-transitions of random
variable can be represented via a directed graph with edges
having state transition probabilities. For smart-building con-
text, the most probable route of user could be predicted (e.g.
entry (Z1) → reception (Z2) → business center (Z5)). This
probability distribution could be learned over a period of time

Fig. 2. Abstract Overview of Idea

based on user behavior derived from number of visits. This
pattern is not limited to individual characteristic, however it
could represent the crowd behavior in general (e.g. employ-
ees in smart-building). We use two approaches for learning
which are described as follows.

Fig. 3. Rule-Based IoT-Zone Connectivity

3.1.1. Variable Order Markov Model

In the base case, time invariant random variable has been
modeled. Time dependence may be included via temporal
variables, which control the probability distributions. We as-
sume that the next chosen state by the user depends only on
the past few states. A threshold Markov model of order n is
chosen. Let the next zone (i.e. state) be denoted by Zn+1.
Let z ≡ Z1...Zn be the previous sequence of up to n zones.
Let N(zZn+1) denote the number of occurrences of the sub-
sequence of zones encountered in the training sequence of
zones. Let ∑

s

= {σ : N(zσ) > 0}
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then, the conditional probability estimator is given by

P̂n(Zn+1|z) =
N(zZn+1)∑

Z∈
∑

s

N(zZ)

For implementing the n bounded Markov model, data-
structure "trie" T is used [9] as shown in Figure 4. Each
node of T represents a zone and has a counter for number of
visits made so far. Initially during training phase, the "trie" is
initialized with valid nodes based on history of user’s trail.

Fig. 4. A "trie" corresponding to a sample third order model

3.1.2. Recurrent Neural Network

The second approach for prediction is based on Long Short-
Term Memory (LSTM, a recurrent neural network architec-
ture). A LSTM cell [10] enables the network to remember
previous trends for predicting future output. This approach
first trains a neural network for each user based on his/her
previous trail. Currently the previous trail is used on the fea-
ture vector. The prediction problem for the next state has been
handled using a multiclass prediction model. Each of the next
possible states is considered a class. Given the previous se-
quence window, the classifier predicts a class which corre-
sponds to the predicted next state. Depending on the problem,
the LSTM may skew towards long term or short term memory
as needed.

3.2. IoT-token Generation

Every user in the IoT system has to register with Enrollment
Certificate Authority (ECA) which provides an Enrollment
Certificate (ECert) to the user. User’s public key is used to
gather transactions from blockchain establishing his/her trail.
GPS system and locations of surrounding IoT-devices in the
network along with mined user trail helps in establishing his
current zone. User’s attributes like permission level, organi-
zation etc. is checked with ECA to verify his/her authenticity.
Next possible zones are identified using trail. Based on the

transition probabilities, tokens are generated for high proba-
bility zone devices whereas for low probability zones, a 2nd

step of authentication (fingerprint scan, PIN/PASSWORD) is
required. The transition probabilities are learnt using Variable
Order Markov Model (VMM) and stored in "trie" data struc-
ture. Next probable transition to IoT-Zones is predicted us-
ing refined zone connectivity matrix and nth order prediction
(lookback n steps). For some specific situations like an emer-
gency, corresponding tokens are assigned to all users at the
time of on-boarding. These tokens are enabled in the system
only when the corresponding situation occurs. For example
emergency exit tokens will be enabled in case of fire.

{
"timestamp": "1572042",
"userName": "Charlie",
"currentLocation": "Floor 4",
"userTrail": ["Parking",

"Entrance",
"Cafe"]

"designation": "employee",
"validityPeriod": "28192",
"ECert": "MIIBrjCC....CQ"

}

Fig. 5. Crypto token JSON object

Tokens generated for next possible zones/devices are
stored in a digital repository also known as wallet [11]. Wal-
let also stores the private key of the user which is required to
sign a transaction. The generated tokens are stored as JSON
objects (Figure 5) in transaction which are later verified to
execute a transaction.

3.3. IoT-token Validation

Once IoT-token has been generated, an action is triggered
which is being analyzed by a nearby IoT-hub. IoT-hub queries
the particular token from digital wallet of nearby user devices
via API and verifies it with the help of blockchain network.
Each user has unique private-public key pair. Token is signed
using RSA Digital Signature algorithm [12] by user’s private
key. Digital Signature is verified first on blockchain network
using user’s public key. This ensures that token is not used
by another user in the network in case of token theft. If
IoT-Tokens are authentic, the user is granted access to con-
trol associated devices in IoT-Zones. After validation, the to-
ken is included as part of a transaction which gets added in
the blockchain network using Practical Byzantine Fault Tol-
erance (PBFT) consensus [13]. If transaction addition was
successful, then current tokens get disabled and user’s wallet
is updated with new IoT-tokens for next possible zones. The
prediction model parameters are updated accordingly.
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4. RESULTS AND CONCLUSION

4.1. Dataset

We have used dataset of multiple users transitioning between
zones in a smart building. For every user on an average, 1000
data sequences were used. Zones are mapped to floors of the
building. Inter-floor transitions were considered for simplic-
ity of the problem. Intra-floor transitions are ignored as tran-
sitions within a floor are considered inconsistent.

4.2. Test Setup

The Blockchain framework used is Hyperledger Fabric v0.6
by IBM. The Blockchain network comprises of 4 validating
nodes and 1 Certificate Authority node. The use-case logic is
implemented in Smart Contract over Hyperledger fabric.

4.3. Zone Connectivity Matrix

Zone connectivity matrix is generated (Figure 6) for the rule
based method as discussed in section 3.1. Simpler zone con-
nections can be obtained by setting a threshold probability.
For the dataset, we have generated zone connectivity graph as
shown in Figure 7 for threshold probability of 0.1.

Fig. 6. Zone Connectivity Matrix

4.4. Discussion

To train the models, 60% of the data were used and the rest
40% were used for calculating the accuracy of the prediction.
A comparison of the Markov models in presented in Table 1.
It is observed that decreasing the order improves accuracy
with a majority of the users, suggesting that for the user zone
movement prediction, the immediate history has more corre-
lation with the next step. The number of labels represent the
different zones which are frequently visited by the user. As
the number of labels increase, the accuracy decreases due to
more degrees of freedom for each user. In the general case,
this suggests that an application oriented order be used.

To learn more complex relationships, LSTM model with
32 hidden units within 1 layer and learning rate of 0.1 was

Fig. 7. Zone Connectivity Graph

Markov LSTM
User Id 3rd order 2nd order 1st order No of labels Accuracy

1 98.75 99.12 99.30 4 77.77
2 89.65 89.65 93.10 4 71.80
3 43.75 59.37 62.50 5 64.40
4 85.18 88.89 96.30 6 61.50
5 97.88 83.10 66.90 7 60.00
6 53.33 63.33 73.33 5 52.68
7 54.76 64.29 73.81 7 52.08
8 61.19 64.18 65.67 7 46.85

Table 1. Accuracy of Markov and LSTM model for 8 users

used whose results are shown in Table 1. In our model, Gradi-
ent Descent algorithm is used for optimization. It is observed
that, on an average, LSTM model gives less prediction accu-
racy than Markov model, owing to lesser training data and the
inherent first order Markov behavior present in the training
set. However, RNN based model will potentially perform bet-
ter with more diverse datasets with availability of more data.
Also parameters like training steps, batch size, learning rate,
hidden units, etc. were tweaked for better accuracy.

4.5. Conclusions

Continuous security is established in the system with seam-
less user authentication using crypto-tokens. This innovative
approach enhances the security of the system without any user
intervention as crypto-tokens are pre-generated using various
prediction models. Further crypto-token generation can be
improvised by using an ensemble learning approach which
uses the best models specific to the input data or a weighted
combination thereof. Better accuracy is achievable using big-
ger datasets in LSTM model. This being the first solution of
its kind, by incorporating more diverse and big datasets bet-
ter results could be achieved for commercialization. More-
over, the intangible and unquantifiable security benefits of
blockchain will enhance its potential for commercial appli-
cation in future.

6426



5. REFERENCES

[1] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic,
and Marimuthu Palaniswami, “Internet of Things (IoT):
A vision, architectural elements, and future directions,”
Future Generation Computer Systems, vol. 29, no. 7, pp.
1645 – 1660, 2013, Including Special sections: Cyber-
enabled Distributed Computing for Ubiquitous Cloud
and Network Services and Cloud Computing and Sci-
entific Applications - Big Data, Scalable Analytics, and
Beyond.

[2] S. Sicari, A. Rizzardi, L.A. Grieco, and A. Coen-
Porisini, “Security, privacy and trust in Internet of
Things: The road ahead,” Computer Networks, vol. 76,
no. Supplement C, pp. 146 – 164, 2015.

[3] S. Nakamoto, “Bitcoin: A Peer-to-Peer Elec-
tronic Cash System,” https://bitcoin.org/
bitcoin.pdf, 2009.

[4] M. Rosenfeld, “Overview of Colored Coins,” https:
//bitcoil.co.il/BitcoinX.pdf, 2012.

[5] K. Christidis and M. Devetsikiotis, “Blockchains and
Smart Contracts for the Internet of Things,” IEEE Ac-
cess, vol. 4, pp. 2292–2303, 2016.

[6] Cheng Xiao-rong, Feng Qi-yuan, Dong Chao, and
Zhang Ming-quan, “Research and realization of au-
thentication technique based on OTP and Kerberos,” in
Eighth International Conference on High-Performance
Computing in Asia-Pacific Region (HPCASIA’05), July
2005, pp. 5 pp.–416.

[7] “Hyperledger Fabric docs v0.6 - whitepa-
per,” https://media.readthedocs.
org/pdf/hyperledger-fabric/v0.6/
hyperledger-fabric.pdf, 2017.

[8] Rodrigo Roman, Jianying Zhou, and Javier Lopez, “On
the features and challenges of security and privacy in
distributed internet of things,” Computer Networks, vol.
57, no. 10, pp. 2266 – 2279, 2013, Towards a Science
of Cyber Security Security and Identity Architecture for
the Future Internet.

[9] Ron Begleiter, Ran El-Yaniv, and Golan Yona, “On Pre-
diction Using Variable Order Markov Models,” Jour-
nal of Artificial Intelligence Research, vol. 22, no. 1, pp.
385–421, Dec. 2004.

[10] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steune-
brink, and J. Schmidhuber, “LSTM: A Search Space
Odyssey,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 28, no. 10, pp. 2222–2232, Oct
2017.

[11] “Bitcoin Wallet,” http://www.investopedia.
com/terms/b/bitcoin-wallet.asp.

[12] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosys-
tems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb.
1978.

[13] Miguel Castro and Barbara Liskov, “Practical Byzantine
Fault Tolerance,” in Proceedings of the Third Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’99), Berkeley, CA, USA, 1999, pp. 173–186,
USENIX Association.

6427


