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ABSTRACT
In 2017, smart speakers (such as Amazon Echo, Google
Home, etc.) became a commercial success. Most smart
speakers have a circular microphone array to provide hands-
free, voice-only interaction from a distance. In this work, we
exploit this mic array for opportunistically sensing gestures
and tracking exercises. To this end, we measure the Doppler
shift on a pilot tone caused by a gesturing human body, and
use beamforming of the mic array to extend the range of the
detection. Data from 12 participants show that gestures can
be detected with an accuracy of 96.8% up to a distance of
2.5 meters using an inaudible 20 kHz pilot tone. For exer-
cise tracking, we train a deep neural network to recognize
10 different exercises, and count repetitions by peak-finding
heuristics. Data from 17 participants show that exercise
classification accuracy is 96% and count accuracy is 91.8%.
To conclude, we discuss hardware enhancements to smart
speakers to further increase their gesture sensing capabilities.

Index Terms— Microphone array, in-air gesture sensing,
smart speakers, exercise detection, exercise counting

1. INTRODUCTION
Voice-enabled speakers, also known as smart speakers, have
integrated virtual assistants that offer hands-free, voice-only
interaction. In 2017, 35.6M smart speakers were sold in the
US, 129% more than 2016 [1]. Major corporations, including
Apple, Amazon, and Google, are competing in this space with
respective offerings. Most smart speakers consist of a circular
array of microphones, e.g., Amazon Echo has a 7-mic array,
and Apple Homepod and Sonos One have a 6-mic array [2].
The mic array increases a device’s range for recognising voice
commands from across the room using beamforming, noise
reduction, and acoustic echo cancellation [2, 3].

In this work, we propose and design a prototype to ex-
ploit the mic array of smart speakers for opportunistic ges-
ture sensing. We use the beamforming capabilities of the mic
array to enable gesture-based distal interaction and exercise
tracking. Previously, Soundwave [4] demonstrated proximal
gesture-based interactions (up to 1 meter) on a laptop’s sin-
gle microphone. They measured the Doppler shift caused by
a gesturing hand on an inaudible pilot tone. We build upon
that work and use the mic array in smart speakers to achieve

gesture-based interactions up to 2.5 meters from the device.
The mic array helps extend the range as we beamform to in-
crease the SNR in the direction of the gesturing human. Data
from 12 participants shows that gestures can be detected with
an accuracy of 96.8% up to a distance of 2.5 meters (using an
inaudible 20kHz pilot tone) and with an accuracy of 95.7%
up to 3.5 meters (using an audible 6kHz tone).

We observed that the accuracy of the gesture detection is
high enough to recognize exercises performed at a distance
and to count repetitions. With a deep learning classifier, we
are able to differentiate between 10 commonly performed ex-
ercises using a pilot tone of 20kHz. Data from 17 participants
performing the 10 exercises at a distance of 2.5 meters from
the device shows an accuracy of 96% in exercise recognition;
the data also shows an accuracy of 91.8% in counting the ex-
ercise repetitions using peak finding heuristics. To the best
of our knowledge, this work is the first to demonstrate distal
interaction with smart speakers enabled by beamforming. We
also recommend hardware configurations of the mic-array to
further increase the range of the detection.

2. RELATED WORK

We review the prior work in two related areas of interaction:
the use of sound waves and exercise detection.
Interaction using Sound Waves: There has been recent in-
terest in utilizing sound waves for gesture-based interaction
in commodity devices. Soundwave [4] measures Doppler
shift on inaudible tones to recognize gestures in the near-field
range of 1 meter from the device. FingerIO [5] uses OFDM-
modulated sound to track fingers with an accuracy of 0.8
cm. CovertBand [6] uses similar OFDM-modulated sound
for tracking multiple individuals’ locations and their activ-
ities. Wang et al. designed a LLAP [7] scheme exploiting
phase changes in sound as it reflects from moving hand/finger
and achieved a distance estimation error of 0.7 cm for 1D
(1-dimensional) tracking. Strata [8] further reduced the 1D
tracking error to 0.3 cm, by estimating the channel impulse
response in the time-domain. Most of the prior art explores
the possibility of enhancing the granularity and accuracy of
the gestures recognized, and are limited to a distance range in
close proximity ∼1 meter from the device.
Exercise Tracking: Most prior art for tracking exercises [9,
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Fig. 1: Signal processing pipeline to transform the audio sig-
nal received at 7 channels to a velocity-vs-time plot.

10, 11] use inertial sensors on the body. myHealthAssistant
[10] and Muehlbauer et al. [11] use an on-body smartphone to
recognize the wearer’s exercises. RecoFit [9] achieved higher
accuracy (compared to [10, 11]) using an arm-worn inertial
sensor to track repetitive exercises such as weight training and
calisthenics. In this work, we explore gesture detection and
exercise tracking from a distance with hardware similar to off-
the-shelf smart speakers. To the best of our knowledge, this
has not been previously studied.

3. SYSTEM DESIGN

3.1. Hardware and Principle

We use the MiniDSP UMA-8 circular mic array [12], as it best
mimics today’s off-the-shelf smart speakers while providing
access to the raw audio signals. Similar to Amazon Echo de-
vices, it consists of 7 (N ) MEMS microphones, with 1 mic at
the center and 6 mics uniformly spaced at the circumference
of a circle with radius 43 mm (r). A commodity laptop was
used to emit a continuous, inaudible pilot tone. N channel
audio samples were recorded from the mic array at a sam-
pling rate of 48kHz (Fs), capturing 24 bits per sample. The
pilot tone from the laptop was reflected by nearby objects, in-
cluding the user’s body. The reflected signals received at the
N audio channels were processed to estimate the speed and
direction of any moving entity (Figure 1).

Beamforming: We use the standard Delay-and-Sum
beamforming technique [13]. We calculate the time delay-
of-arrival of the sound received at the different microphones
relative to the sound arriving at the center microphone and
then superimpose time-shifted variants of the N signals. This
enhances the SNR of the signal received in the direction of
the beamforming, which is set to the direction of the user.

Doppler Shift: The apparent frequency shift when there
is relative motion between the source and the receiver is well-
known as the Doppler effect. This shift is proportional to the
relative velocity between the source and the receiver. In our
system, both the speakers and the microphones are stationary
while the user’s body is the moving reflector. The velocity of

this moving reflector can be computed as:

fr = ft ∗
(c+ v

c− v

)
(1)

where fr is the frequency recorded by the mic, ft is the pilot
frequency emitted by the speakers, c is the speed of sound in
air, and v is the speed of the body/hand towards the mics.

Pilot frequency: The pilot tone emitted by the speaker
must be inaudible so as to not interfere with the normal op-
eration of the device. We use a 20kHz pilot tone in our ex-
periments. However, the hardware we use is not designed to
beamform for such a high frequency. Specifically, the sep-
aration between the microphones is 43mm, which is much
higher than the separation as per spatial sampling theory of
< 8.8mm (=λ/2) [13]. To compare this with a hypothetically
closely spaced mic-array, we also use a 6kHz pilot tone.

3.2. Algorithm and Implementation Details

1. Beamforming and FFT: The N = 7 channel audio from
the mic array is beamformed with the Delay-and-Sum tech-
nique. The resultant signal is passed through a high pass filter
to extract frequencies in a 3.5kHz range around the pilot fre-
quency of 20kHz. Then, a NFFT = 2048 point FFT was
computed to obtain a 1025-point frequency spectrum.
2. Computing fr: The received frequency fr (in Equa-
tion (1)) is set as the frequency farthest from ft in the interval
[ft − 1, ft + 1] kHz with a magnitude above a threshold
value. This threshold value is set to be 5dB plus the maxi-
mum magnitude of the signal outside the search interval, i.e.,
in [ft− 3.5, ft− 1] kHz and [ft+1, ft+3.5] kHz. The value
of 5dB was experimentally calibrated to avoid falsely noting
noisy perturbations as Doppler frequency shifts.
3. Computing v: From ft and the computed fr, we compute
the velocity from Equation (1). Since only one velocity value
is calculated for each 1024 sized sample window (2048-point
NFFT with 50% overlap), the time resolution for the velocity-
vs-time curve was time res = (NFFT ∗ overlap)/Fs ≈ 21.3
ms. Further, a frequency resolution of 23.437Hz for a 2048
point FFT with a 48kHz sampling rate and a 20kHz pilot tone
yields a speed resolution of 20.62 cm/s.
4. Exercise classification: As exercise is usually repetitive,
we leverage the autocorrelation property in the power spec-
trum to estimate the periodicity of the velocity-vs-time curve,
similar to [9]. The v-t curve was divided into chunks of T =
5s with a stride length of S = 200ms. For each chunk, we
computed auto-correlation features with lags ranging from
0-100 and the first 100 FFT spectrum bins in discrete fre-

quency steps of
(
b(Fs/NFFT ∗overlap)c

dT/time rese

)
= 0.199 Hz from

0-19.74Hz. With these 201 computed signal properties as fea-
tures, we trained a dense 2-layer neural network to classify the
observed pattern into one of 10 exercises We used ReLu (rec-
tifier linear unit) for non-linear activation and the categorical
cross-entropy loss function for training the network.
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1. Cross stretch 3,4. Folded shoulder 
rotation (C and AC)

2. Curls 5. On-spot jog 7. Leg raise6. Jumping 
jacks

8,9. Shoulder 
rotation (C and AC)

10. Walk

Fig. 2: The ten exercises performed by the participants. (C: Clockwise, AC: Anti-clockwise)
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Fig. 3: Distal gesture counting accuracy at different distances
from the device under four conditions. (BF: Beamforming)

5. Exercise counting: We count exercise repetitions by iden-
tifying repeating peaks in the velocity-vs-time graph. From
experiments we see that a single repetition can correspond
to multiple peaks with varying ampltitudes and shapes (Fig-
ure 4). Thus, we needed to apply both min-peak-prominence
and min-peak-distance filters to isolate the peaks. The min-
peak-prominence was set experimentally per exercise, while
min-peak-distance was set to 0.2s uniformly.

4. EVALUATING GESTURE DETECTION

Setup: The MiniDSP device connected to a laptop was placed
at one end of a long aisle in an office space. Twenty mark-
ers separated by 0.5 m were placed on the aisle floor. Par-
ticipants were asked to stand at the first marker with their
toes touching the marker. They were instructed to perform
the ‘forward’ (pushing hand away from the body) and ‘back-
ward’ (pulling hand towards the body) hand gestures at each
marker 10 times. The participants were not allowed to take
breaks. The experiment was repeated with two pilot tones of
20 kHz and 6 kHz. We also experimented with an audible 6
kHz tone to understand the impact of lower frequency on the
range of distal interaction. Twelve participants (10 male and 2
female of age 22.4±4.3 years) were recruited. Their average
weight was 73±10.1 kgs and average height was 172.5±8.7
cms. Participants took ∼5 minutes to complete this task.
Results: The signal processing pipeline described in the pre-
vious section was employed to compute the velocity-vs-time
plot. The gesture count was estimated by peak finding heuris-
tics with the value of min-peak-prominence set at 35 cm/s
(experimentally determined). The accuracy was computed as
the percentage of the absolute error w.r.t. the ground truth of
10 counts per participant per marker. We consider 4 condi-
tions: for two pilot tones 20kHz and 6kHz we report results

with and without beamforming (using audio from the central
mic only). The accuracy as a function of the user’s distance
from the device for the 4 conditions is plotted in Figure 3.
With the inaudible pilot tone of 20kHz, using the mic array to
beamform increased the detection range with high accuracy
(>95%) from 1m to a significant 2.5m. Also using an audible
pilot tone of 6kHz increases the corresponding range to 3.5m,
suitable for across-the-room uses. At a distance of 3.5m, the
20kHz tone had an accuracy of 96.8±2.2% at 2.5m, while it
was 95.7±0.9% for the 6kHz tone.

5. EVALUATING EXERCISE TRACKING

Setup: The MiniDSP device connected with a laptop was
placed on a table (height 29 inches). A marker was placed at
a distance of 2.5 meters from the device. Participants were
instructed to stand over the marker and perform 10 exer-
cises (Figure 2) – Cross stretch (right hand touching left toe
and vice-versa), Curls (both hands together with no weight),
Folded shoulder rotation (Clockwise and Anti-Clockwise),
On-spot jog, Jumping jacks, Leg raise (in the front), Shoulder
rotation (Clockwise and Anti-Clockwise), and Walk – 20 rep-
etitions each, in a random order. For walk, participants were
asked to walk five steps away and then five steps towards the
device, repeated twice for 20 steps. The experiment was run
by the participant, without any external intervention. The or-
der of the exercises was written on a white board. Participants
were asked to press the ‘S’ button on the laptop to start the
recording, go back to the marker and perform the exercise.
Once one set of exercise was completed, participants needed
to walk to the laptop and press the ‘Space’ button to stop
recording. One of the researchers stood outside the room
observing the session through a glass door. A pilot tone of
20kHz was used. Participants were free to take breaks. Each
exercise session lasted for around 30 minutes. Seventeen
participants (15 male and 2 female of age 26.4±4.4 years)
were recruited. Their average weight was 73.6±12.3 kgs and
height was 174 cms±9.6 cms. On a 5-point Likert scale for
fitness with 5 being very fit, the average fitness of the partici-
pants was 3.4±0.8. Six reported exercising 4-5 times a week,
four reported exercising 2-3 times a week, and the remaining
did not regularly exercise.
Results - Recognition Accuracy: From the velocity-vs-time
graph (examples in Figure 4), the chunks and features for
classifying the exercise were computed as described in Sec-
tion 3. For training the neural network, the dataset was ran-
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Fig. 4: The velocity-vs-time graphs obtained with the signal processing pipeline for some of the exercises.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
1. Cross stretch 0.99 0 0 0 0 0 0 0 0 0

2. Curls 0 0.99 0 0 0 0 0 0.01 0 0
3. Folded shoulder rotation C 0 0 0.93 0.05 0 0 0 0 0.01 0

4. Folded shoulder rotation AC 0 0.01 0.04 0.95 0 0 0 0 0 0
5. On-spot jog 0 0.02 0.02 0.02 0.87 0 0.02 0 0 0.04

6. Jumping jacks 0 0 0 0 0 0.97 0 0.01 0 0
7. Leg raise 0 0 0 0 0 0 0.98 0.02 0 0

8. Shoulder rotation C 0 0.01 0 0 0 0 0.01 0.97 0 0.01
9. Shoulder rotation AC 0.01 0.01 0 0 0.01 0.01 0.01 0.04 0.91 0

10. Walk 0.02 0.01 0 0 0 0 0 0.02 0.02 0.93
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Fig. 5: Normalized confusion matrix for classifying exercises

domly shuffled, and 70% of the dataset was used for train-
ing, and the remaining 30% was used as the test set. After
training, the accuracy the network classified exercises with
an accuracy of 99.8% on the training set, and 95.9% on the
evaluation set. Figure 5 shows the confusion matrix of the
classification for the 10 exercises. On-spot jog had the lowest
accuracy (87.3%), as it was confused with walking in 4.4% of
the instances. All other exercises had a recognition accuracy
above 90%. As an existing benchmark, RecoFit [9] reported
a recognition accuracy of 96% recognition accuracy for 13
exercises using data from wearable sensors.

Exercise no. 1 3 4 6 7 8 9
Accuracy (m sd) 85.7 15.8 91.3 16.2 94.7 5 86.7 19 97 4.8 95 3.7 92.2 6.6

Results - Counting Accuracy: Counting was performed
with peak detection heuristics with experimentally deter-
mined min-peak-prominence values for each exercise. For
curls, on-spot jog, and walk, we were unable to determine
strong peaks (see example of on-spot jog in Figure 4). For the
remaining 7 exercises we report the accuracy in percentage
terms w.r.t. the ground truth of 20 repetitions in the table
above. Overall counting accuracy was 91.8±12%, with cross
stretch 85.7±15.8% and jumping jacks 86.7±18.9% being
the lowest. Remaining 5 exercises had an accuracy > 91%.

6. DISCUSSION AND CONCLUSION

With experimental measurements, we have demonstrated that
a smart speaker emitting an inaudible pilot tone from a dis-
tance of 2.5m can detect gestures with an accuracy of 96.8%,
classify exercises with an accuracy of 96%, and count exer-
cise repetitions with an accuracy of 91.8%. The relatively
large distance and high accuracy is enabled by opportunis-
tically using the mic arrays present on the smart speakers.
However there are two major limitations of our work: (a) a
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Fig. 6: Beamforming pattern for 20kHz with (left) 43 mm
radius, 6 mics, and (right) 43 mm radius, 24 mics in solid red
line, and 8.8 mm radius, 6 mics in dashed blue line.

relatively small sample size of 17 participants with 10 differ-
ent exercises, and (b) applicability of Doppler analysis only
for specific angles between user and mic/speaker (fig. 6 left).

Moreover, for truly across-the-room interaction, the sup-
ported range of interaction should be about 5m. There are
two fundamental ways to enhance the range. Firstly, in soft-
ware, instead of Doppler shift sensing, we can employ meth-
ods such as Frequency-Modulated Continuous Wave and Or-
thogonal Frequency-Division Multiplexing. We plan to report
comparative results in future work. Secondly, in hardware,
the mic array can be optimized, as beamforming for 20kHz
with mic separation of 43mm is not effective (Figure 6, left).
At the same radius of 43mm, increasing to 24 mics improves
the beamforming pattern (Figure 6, right, red solid lines) but
at prohibitive hardware and signal processing cost. For the
same number of mics, reducing the separation to 12.9mm will
roughly improve the performance of the 20kHz tone to that of
the 6kHz tone, which according to our experimental results
would increase the range from 2.5m to about 3.5m, which is
still short of the 5m target. As per spatial sampling theory
[13], the separation between mics should not be more than
8.8mm for 20kHz (Figure 6, right, blue dashed lines) for a 5m
range. But such a small separation adversely impacts beam-
forming for the audible range, affecting the core functionality.

Considering trade-offs between number of mics, separa-
tion, and beamforming for audible and 20kHz range, we pro-
pose a hybrid setup. In this setup, there are two mic arrays:
6 mics in a circular array of 43mm for the audible range for
voice interaction, and 6 mics in a circular array of 8.8mm for
the inaudible pilot tone for gesture tracking. With these soft-
ware and hardware modifications, our results show that we
can unlock novel across-room interaction modalities and ap-
plications with the already popular smart speakers.
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