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ABSTRACT

Motion detection as a key component in modern security
systems has received an increasing attention recently, but
most existing solutions require special installation, calibra-
tion, and only have a limited coverage. In this paper, we
propose WiDetect, a highly accurate, calibration-free, and
low-complexity wireless motion detector. By exploiting the
statistical theory of electromagnetic waves, we establish a
link between the autocorrelation function of the physical
layer channel state information (CSI) and motion in the en-
vironment. Temporal, frequency and spatial diversity are
also exploited to further improve the robustness and accuracy
of WiDetect. Extensive experiments conducted in several
facilities show that WiDetect can achieve similar detection
performance compared to a commercial home security sys-
tem, while with much larger coverage and lower cost.

Index Terms— Wireless sensing, motion detection, sta-
tistical theory

1. INTRODUCTION

Motion detection plays a vital role in modern security system-
s. However, popular approaches that rely on video, infrared,
RFID, UWB, etc. all require specialized hardware deploy-
ment and has its own limitation in practical applications. For
example, the vision-based schemes [1] can only perform mo-
tion monitoring in areas covered by camera, and in addition
they introduce privacy issues. The infrared-based motion sen-
sors are especially sensitive to thermal radiation, leading to
high false alarm rate.

Recently, WiFi has been considered in wireless sensing
due to its deployment flexibility, large coverage, and cost ef-
ficiency. RASID [2] is exploits the fluctuations of the receive
signal strength indicator (RSSI) to detect the presence of hu-
man in indoors, based on the dissimilarity in RSSI distribu-
tion in a static environment. E-eyes [3] follows a similar idea
but uses CSI instead of RSSI as the metric. PILOT [4] de-
composes the CSI amplitude correlation matrix using singu-
lar value decomposition (SVD) and monitors the variation-
s of the singular vectors along time. Similarly, CARM [5]

Table 1. Related Works
Reference FN/FP Cal.
RASID [2] 3.8%/4.7% Yes
PILOT [4] 10.0%/10.0% Yes
E-eyes [3] 10.0%/1.0% Yes
Omni-PHD [7] 8.0%/7.0% Yes
DeMan [8] 5.93%/1.45% Yes
CARM [5] 2.0%/1.4 times per hour Yes
SIED [9] 0%/6.4%(slow motion) Yes

tracks the variance of the second singular vector to detect mo-
tion. WiDar [6] computes cross-correlation among different
subcarriers and uses the increase in the correlation between
adjacent subcarriers as an indicator of motion. Table 1 sum-
marizes the performance of most existing approaches, where
the second column shows the false negative and false posi-
tive rate and the third column shows whether calibration is
needed. As can be seen, all of them rely on some kind of
calibration before use, such as storing the features of normal
states, or fine-tuning of parameters, which is not robust to
the environmental dynamics and not easy to use for ordinary
users. Also, their performance in terms of coverage, accuracy,
and computational complexity, is quite far from meeting the
requirement of real applications.

To address these challenges, in this paper, we present
WiDetect, a highly accurate and robust WiFi-based motion
detector that can cover a large area and is easy to use. We
first characterize the impact of motion on the autocorrelation
function (ACF) of the received channel power response us-
ing statistical theory of electromagnetic (EM) waves. Then,
we define a motion statistic to measure the likelihood of the
presence of motion. To improve the accuracy of detection,
WiDetect combines all the motion statistics obtained from
multiple subcarriers, and the impact of the number of C-
SI measurements and the number of available subcarriers
on WiDetect is quantified. We conduct extensive experi-
ments in an office and a single family home, where 4 PIRs
are deployed for comparison. Experiment results show that
WiDetect is able to detect human motion in a large area while
maintaining a negligible false alarm rate.
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The rest of the paper is organized as follows. Section 2
presents a statistical modeling of the CSI measurements based
on statistical theory of EM waves. The detailed design of
WiDetect is presented in Section 3 and experimental evalua-
tion is discussed in Section 4. Section 5 concludes the paper.

2. STATISTICAL MODELING OF CSI
MEASUREMENTS

In this section, we discuss the theoretical basis of WiDetect.

2.1. CSI Measurement

Consider a pair of WiFi devices deployed in an indoor envi-
ronment and the transmitter (Tx) keeps transmitting signals
to the receiver (Rx). Let X(t, f) and Y (t, f) be the transmit-
ted and received signals over a subcarrier with frequency f at
time t. Then, the CSI on the subcarrier with frequency f at
time t is H(t, f) = Y (t,f)

X(t,f) [10], which is a complex number
and can be obtained from the PHY layer of commercial WiFi.
However, in practice, the estimatedH(t, f) often suffers from
severe phase distortions [11, 12], so in this work we only use
the magnitude of H(t, f) and define the power response of
the CSI G(t, f) as follows,

G(t, f) , |H(t, f)|2 = µ(t, f) + ε(t, f), (1)

where µ(t, f) denotes the part contributed by the propaga-
tions of the EM waves, and ε(t, f) denotes the measurement
noise. Let F denote the set of available subcarriers. For any
given subcarrier f ∈ F, ε(t, f) can be shown through exper-
iment measurements to be an additive white Gaussian noise,
i.e., ε(t, f) ∼ N(0, σ2(f)), and ε(t1, f1) and ε(t2, f2) are in-
dependent for any two different subcarriers f1 ̸= f2 or any
two different time slots t1 ̸= t2.

2.2. Modeling of the Signal Term

Radio propagation in a building interior is in general very
difficult to analyze because the EM waves can be absorbed
and scattered by walls, doors, windows, moving objects, etc.
However, buildings and rooms can be viewed as reverbera-
tion cavities in that they exhibit internal multipath propaga-
tions. Hence, we refer to a statistical modeling instead of a
deterministic one and apply the statistical theory of EM fields
developed for reverberation cavities to analyze the statistical
properties of the signal term µ(t, f).

Consider a rich-scattering environment as illustrated in
Fig. 1, which is typical for indoor spaces. The scatter-
ers are assumed to be diffusive and can reflect the im-
pinging EM waves towards all directions. A pair of Tx
and Rx are deployed in the environment, both equipped
with omnidirectional antennas, and the Tx emits a con-
tinuous EM wave via its antennas, which is received by
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Fig. 1. Propagation of radio signals in scattering environment.

the Rx and the corresponding received electric field is de-
noted as E⃗Rx(t, f). Actually, µ(t, f) measures the pow-
er of E⃗Rx, i.e., µ(t, f) = ∥E⃗Rx(t, f)∥2, where ∥ · ∥2
denotes the Euclidean norm. Within a sufficiently short
period, E⃗Rx(t, f) can be decomposed into two parts as
E⃗Rx(t, f) ≈ E⃗s(f) +

∑
i∈Ωd

E⃗i(t, f), where E⃗s(f) and
E⃗i(t, f) denote the components contributed by all the static
scatterers and the i-th dynamic scatterer, respectively, and
Ωd denotes the set of dynamic scatterers in the environment.
When the environment is static, Ωd is empty. The intuition
behind the decomposition is that each scatterer can be treated
as a “virtual antenna” diffusing the received EM waves in all
directions and then these EM waves add up together at the re-
ceive antenna after bouncing off the walls, ceilings, furniture,
windows, etc. of the building.

Let vi denote the speed of the i-th moving scatterer and
E⃗i(t, f) is expanded in the orthogonal basis as E⃗i(t, f) =
Ei,x(t, f)x̂+Ei,y(t, f)ŷ +Ei,z(t, f)ẑ, where Ei,u(t, f) de-
notes the linear component of E⃗i(t, f) along the direction û,
u ∈ {x, y, z}, and ẑ points to the moving direction of the
scatterer. Then, under certain common assumptions on the
homogeneity of scattering for reverberation cavities [13], the
ACF for each linear component of E⃗i(t, f) can be derived in
closed forms as

ρEi,x
(τ, f) = ρEi,y

(τ, f)

=
3

2

[
sin(kviτ)

kviτ
− 1

(kviτ)2

(
sin(kviτ)

kviτ
−cos(kviτ)

)]
, (2)

ρEi,z (τ, f) =
3

(kviτ)2

[
sin(kviτ)

kviτ
−cos(kviτ)

]
, (3)

where k is the wave number of the transmitted signal and τ
denotes the time lag. Denote E2

i (f) as the radiation power
of the i-th scatterer, E2

d(f) as the variance of µ(t, f), and as-
sume that E⃗i1(t, f) and E⃗i2(t, f) are statistically uncorrelated
for ∀i1 ̸= i2, the ACF of µ(t, f) can be approximated as

ρµ(τ, f) ≈ 1

E2
d(f)

∑
u∈{x,y,z}

( ∑
i∈Ωd

2E2
s,u(f)E

2
i (f)

3
ρEi,u(τ, f)

+
∑

i1,i2∈Ωd
i1≥i2

E2
i1
(f)E2

i2
(f)

9
ρEi1,u(τ, f)ρEi2,u(τ, f)

)
. (4)
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An important observation is that when τ → 0, ρµ(τ, f) → 1.

2.3. Modeling of the CSI Power Response

As µ(t, f) is due to the propagations of EM waves and ε(t, f)
is due to the imperfect measurements of CSI, it can be shown
through experimental results that µ(t, f) and ε(t, f) are un-
correlated with each other, i.e., cov(µ(t1, f), ε(t2, f)) = 0,
for ∀t1, t2, Therefore, the auto-covariance function ofG(t, f)
can be expressed as

γG(τ, f), cov
(
µ(t, f)+ε(t, f), µ(t−τ, f)+ε(t−τ, f)

)
=E2

d(f)ρµ(τ, f)+σ
2(f)δ(τ), (5)

where δ(·) is Dirac delta function. The corresponding ACF of
G(t, f) can thus be expressed as

ρG(τ, f) =
E2

d(f)

E2
d(f) + σ2(f)

ρµ(τ, f), (6)

where τ ̸= 0. When there exists motion and τ → 0, with
the knowledge of ρµ(τ, f) → 1, we know ρG(τ, f) →

E2
d(f)

E2
d(f)+σ2(f)

> 0; when there is no motion and τ → 0,

we have ρG(τ, f) = 0 since E2
d(f) = 0. Therefore,

limτ→0 ρG(τ, f) is a good indicator of the presence of mo-
tion, which is only determined by E2

d(f) incurred by motion
and the power of the measurement noise σ2(f). We will
exploit this important observation in the following design of
WiDetect.

3. DESIGN OF WIDETECT

In this section, we propose the motion statistics and the de-
tection rule, and analyze the performance of WiDetect.

3.1. Motion Statistics

In practice, limτ→0 ρG(τ, f) cannot be measured directly, be-
cause τ → 0 is difficult to achieve due to finite channel sam-
pling rate Fs. Instead, we use the quantity ρG

(
τ = 1

Fs
, f
)

as
an approximation as long as Fs is large enough. Then, we de-
fine the motion statistic from the CSI power response G(t, f)
as the sample ACF of G(t, f),

ϕ̂(f) =
γ̂G

(
τ = 1

Fs
, f
)

γ̂G(τ = 0, f)
, (7)

where γ̂G(τ, f) denotes the sample auto-covariance function
of G(t, f) [14]. When there is no motion, according to the
large sample theory [14], the distribution of ϕ̂(f) will con-
verge to an asymptotically normal (AN) distribution with
mean − 1

T and variance 1
T as T approaches infinity, i.e.,

ϕ̂(f) ∼ AN(− 1
T ,

1
T ) as T → ∞, with T as the number of
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Fig. 2. Floorplans of two different environments.

samples. In addition, ϕ̂(f1) and ϕ̂(f2) are i.i.d. for ∀f1 ̸= f2.
When there exists motion, ϕ̂(f) will converge to a positive
constant E2

d(f)

E2
d(f)+σ2(f)

as Fs → ∞ and T → ∞.

3.2. Detection Rule

In order to improve the reliability of WiDetect, the motion
statistics obtained from all the available subcarriers can be
combined together. In this paper we define the aggregated
motion statistics as the average of all the individual motion
statistics, i.e., ψ̂ = 1

F

∑
f∈F ϕ̂(f). We know that when there

is no motion, ϕ̂(f) converges to an AN distribution and ϕ̂(f1)
and ϕ̂(f2) are i.i.d. for ∀f1 ̸= f2. Therefore, the distribution
of ψ̂ can be approximated as ψ̂ ∼ AN(− 1

T ,
1

FT ). Since the
variance of ψ̂ is inversely proportional to the number of sam-
ples T and the number of subcarriers F , increasing T and F
will improve the detection performance.

According to the above analysis, a simple detection rule
is proposed: WiDetect detects motion only if ψ̂ ≥ η. Giv-
en a preset threshold η, the probability of false alarm can be
approximated as

P
(
ψ̂ ≥ η

)
≈ Q

(√
FT
(
η +

1

T

))
, (8)

whereQ(·) denotes the tail probability of the standard normal
distribution, i.e., Q(x) = 1

2π

∫∞
x

exp(−u2

2 ) du.

4. EXPERIMENTAL EVALUATION

To evaluate the performance of WiDetect, a prototype based
on a pair of commercial WiFi devices is built to detect human
motion in two different environments as shown in Fig. 2. The
carrier frequency is set to 5.805GHz, and the channel sam-
pling rate is 30Hz. Each WiFi device is equipped with 3 om-
nidirectional antennas, and each antenna-pair link has a total
of 114 subcarriers. To avoid the correlations among adjacent
subcarriers, we take one subcarrier from every two adjacent
ones and only use 58 subcarriers for each link, considering
the fact that the CSI of DC subcarrier is not accessible.
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Fig. 3. The performance curves of WiDetect for one link.

Table 2. Detection Index (DI) for Different Regions
Region R. #1 R. #2 R. #3 R. #4 R. #5
DI 0.52 0.22 0 0 0
Region R. #6 A. #1 A. #2 A. #3 A. #4
DI 1 0.90 0.93 0.75 0.95

4.1. Validation of the Theoretical Analysis

We first verify the theoretical analysis described in Section
3. The Tx and Rx of WiDetect are placed in a typical office
environment as shown in Fig. 2(a). One subject first walks
around in the conference room for 30 minutes, and then walks
in the area outside the conference room but within the square
ABCD for another 30 minutes, during the entire period of
which the CSI data is collected. We also collect a set of one-
hour CSI data when the environment is static.

We calculate the false alarm probability using the experi-
mental CSI data and compare with the theoretical false alarm
probability according to 8, and the comparison is shown in
Fig. 3(a) for different sample sizes T and varying η. The the-
oretical curves match well with the experimental ones when
η is greater, and the gap at smaller η is due to the correlation
among different subcarriers, which we assume not existing
in the theoretical analysis. In addition, the ROC curves in
Fig. 3(b) show that the performance of WiDetect improves as
T increases.

4.2. Coverage Test

In this experiment, to test the coverage of WiDetect, one sub-
ject walks in different regions of a single house as shown in
Fig. 2(b) and the positions of the Tx and Rx are also indicated
in the floorplan. We define the detection index (DI) of a re-
gion as the ratio between the duration when motion is detected
and the total time when motion is present in that region. The
results are summarized in Tab. 2. The motion occurring in
Room #3–#5 cannot be detected since they are far away from
the transmission devices. In some regions such as Room #1
and #2, motion is not detected all the time. However, as long
as there is at least one motion detected along the subject’s
moving trajectory, the presence of that moving subject can be

Table 3. Detection Index (DI) for Different Routes
Route #1 #2 #3 #4
DI 0.90 0.98 0.83 1

0 2000 4000 6000 8000
0

2
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10

12

PIR in Area #1
PIR in Area #2
PIR in Area #3
PIR in Area #4
All PIRs
WiDetect

Fig. 4. Experimental results for long-term test compared with
PIRs.

detected.

4.3. Intrusion Test

In this experiment, one subject tries to “break” into the house
following four different routes as indicated in Fig. 2(b), and
then leaves the house following the same route. The subjec-
t spends about one minute in the house for each route. The
detection index for the four routes are shown in Tab. 3. The
results show that the presence of the “intruder” can be detect-
ed most of the time for all the routes.

4.4. Long-Term Test

To evaluate the false alarm rate, we run WiDetect in the same
single house for one week and compare with the detection
that deploys 4 PIRs in different areas of the house. The de-
tection results for both WiDetect and the four PIRs are shown
in Fig. 4, where an even decision index (0, 2, 4, 6, 8, 10)
indicates that no motion is detected. The results show that
WiDetect can achieve comparable detection performance as
the PIRs while having a much larger coverage.

5. CONCLUSIONS

In this work, we propose WiDetect, a highly accurate and
calibration-free motion detection system leveraging CSI of a
wireless channel. Extensive experiments show its superiority
over existing motion detection approaches. Due to its large
coverage, robustness, low cost, and low computational com-
plexity, WiDetect is a very promising candidate for indoor
motion detection applications.
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