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ABSTRACT

This paper proposes a novel splitting (SPLIT) algorithm to
achieve fairness in the multiterminal lossless data compres-
sion problem. It finds the egalitarian solution in the Slepian-
Wolf region and completes in strongly polynomial time. We
show that the SPLIT algorithm adaptively updates the source
coding rates to the optimal solution, while recursively split-
ting the terminal set, enabling parallel and distributed compu-
tation. The result of an experiment demonstrates a significant
reduction in computation time by the parallel implementation
when the number of terminals becomes large. The achieved
egalitarian solution is also shown to be superior to the Shapley
value in distributed networks, e.g., wireless sensor networks,
in that it best balances the nodes’ energy consumption and is
far less computationally complex to obtain.

Index Terms— Data compression, egalitarian solution,
submodularity.

1. INTRODUCTION

There are many problems in signal processing involving
source coding, e.g., the distributed source coding prob-
lem [1,2] that typically arises in the wireless sensor networks
(WSNs), or the multimedia source coding problems in [3–5].
They are also called data compression (DC) problems since
they aim to use the minimum code length to describe the cor-
related sources with the minimum information loss. It is well
known that the achievable source coding rates for the lossless
DC constitutes the Slepian-Wolf (SW) region [6, 7], which
could become very large as the number of terminals/sources
increases. Then, the problem is not only to reach the SW
region, but also to find a solution with certain feature.

For a system where the terminals (also known as users or
nodes) are equally privileged, e.g., a WSN, we always seek
to attain fairness in the SW region. Several game-theoretic
contributions in [8–10] showed that the Shapley value [11] is
one solution within the SW region. However, computing the
Shapley value is intractable in large scale systems due to the
exponentially growing complexity in the number of terminals.
In addition, the Shapley value distributes the source coding

rates based on the statistics of source data so that the termi-
nals with more information are assigned higher rates. Such a
method is less suitable for systems such as WSNs where bal-
ancing the battery energy consumption across all terminals is
desired.

Thus, we consider another approach to attain fairness in
the SW region through the egalitarian solution. We show that
the egalitarian solution balances the source coding rate dis-
tribution, amongst terminals, in the SW region so that any
cost proportional to the source coding rate is fairly allocated
to the terminals. Finding the egalitarian solution is formu-
lated using quadratic programming. We solve this problem
with a novel splitting (SPLIT) algorithm that adaptively up-
dates a cost allocation method until the egalitarian solution is
attained. The SPLIT algorithm also recursively breaks each
terminal set into two smaller subsets, allowing each of them
to calculate its own optimal solution, both in a distributed and
parallel manner. The result of an experiment shows that the
completion time by adopting the parallel computation is sig-
nificantly reduced as the number of terminals increases. In
addition, the SPLIT algorithm completes in strongly polyno-
mial time, which is much faster than the exponential time re-
quired to obtain the Shapley value.

2. SYSTEM MODEL

Let ZV = (Zi : i ∈ V ) be a vector of discrete random vari-
ables indexed by a finite set V . Assume that there is a distinct
node/user i privately observes an n-sequence Zn

i of the termi-
nal Zi that is i.i.d. generated according to the joint distribution
PZV

. The users are required to encode their observations in a
way such that the source sequence Zn

V can be reconstructed at
the sink1 from the source codes. This problem is called (mul-
titerminal) data compression (DC) or source coding [12].

For the subsets X,Y ⊆ V , let H(X) be the amount of
randomness in ZX measured by the Shannon entropy [12] and
H(X|Y ) = H(X ∪ Y ) − H(Y ) be the conditional entropy
of ZX given ZY . Denote rV = (ri : i ∈ V ) a (source cod-
ing) rate vector with each dimension ri denoting the expected

1The sink could be a data fusion/gathering node, e.g., a cluster header in
a WSN.
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code length at which user i encodes his/her observations Zn
i .

We call rV an achievable rate vector if the source sequence
Zn
V can be recovered at the sink by letting the users encode Zn

V

at the rate designated by rV . Let r be the sum-rate function
associated with the rate vector rV such that

r(X) =
∑
i∈X

ri, ∀X ⊆ V

with the convention r(∅) = 0. An achievable rate vector must
satisfy the Slepian-Wolf (SW) constraints [6, 7]:2

r(X) ≥ H(X|V \X), ∀X ⊆ V,
r(V ) = H(V ).

(1)

For a subset X ⊆ V , consider the constraint r(X) ≥
H(X|V \ X) in (1). Since the sum-rate is restricted to
r(V ) = H(V ), there is necessarily an upper bound r(V \
X) = H(V ) − r(X) ≤ H(V \ X). Repeating the same
conversion for all X ⊆ V , we have the SW region

RDC(V,H) = {rV ∈ P (H,≤) : r(V ) = H(V )},

where P (H,≤) = {rV ∈ R|V | : r(X) ≤ H(X),∀X ⊆ V }
is the polyhedron of the entropy function H [13, Section 2.2].
It is shown in [14, Section 4.2] that H is submodular so that
RDC(V,H) coincides with a submodular base polyhedron.
This crucial submodularity property underpins the optimality
and efficiency of the SPLIT algorithm in Section 4.3

3. FAIRNESS: EGALITARIAN VS. SHAPLEY

In general, the SW region RDC(V,H) is not a singleton, i.e.,
there is usually more than one achievable rate vector. To
choose a rV in RDC(V,H) in a system where the users are
equally privileged, e.g., sensors and mobile clients, a natu-
ral selection criterion is the fairness. Based on the coalitional
game formulation of the DC problem in [8, 9], it is possible
to reach the Shapley value [11] that attains fairness from a
typical game-theoretic perspective. Let t denote the disjoint
union. The Shapley value r̂V with each dimension being [15]

r̂i =
∑

C⊆V \{i}

|C|!(|V | − |C| − 1)!

|V |!
(
H(C t {i})−H(C)

)
allocates each user his/her expected marginal entropy.4 Since
the expected source coding length is determined by the en-
tropy [12], the Shapley value is fair in that it assigns each

2The interpretation of (1) is (a) the users inX must revealH(X|V \X),
the information that is uniquely obtained byX , to the sink; (b) the users must
reveal the total information H(V ) to the sink.

3In [14], H is shown to be a polymatroid rank function, a subset of sub-
modular functions.

4H(C t {i})−H(C) is the marginal randomness introduced by user i
to user subset C; By assuming each permutation of V appears equiprobably,
|C|!(|V |−|C|−1)!

|V |! quantifies the frequency that user i will be assigned rate
H(C t {i})−H(C). The Shapley value r̂V lies in RDC(V,H) [15].
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Fig. 1. The polyhedron P (H,≤) and the SW region
RDC(V,H) for the DC problem in Example 1. There are
two fair rate vectors in RDC(V,H): The Shapley value r̂V =
( 3
2 ,

3
10 ,

3
10 ) is the gravity center of the extreme points; The

egalitarian solution rV = (1, 1120 ,
11
20 ) is the minimum `2-

norm, i.e., the minimizer of min{‖rV ‖2 : rV ∈ RDC(V,H)}.

user the cost he/she introduces to the DC problem by encod-
ing his/her observations. However, this fair rate vector may
not be the desired one in all cases. See the example below.

Example 1. The three users in V = {1, 2, 3} observe respec-
tively

Z1 = (Wa,Wb,Wc),

Z2 = (Wc,Wd),

Z3 = (Wb,Wd),

where Wjs for all j ∈ {a, . . . , d} are independent random
bits withH(Wa) = 1,H(Wb) = H(Wc) = 1

2 andH(Wd) =
1
10 . The SW region is shown in Fig. 1. We have the Shap-
ley value r̂V = ( 3

2 ,
3
10 ,

3
10 ), in which user 1 is assigned the

most source coding rates r1 = 3
2 since he/she has the high-

est expected marginal entropy. However, consider the mini-
mum `2-norm r∗V = arg min{‖rV ‖2 : rV ∈ RDC(V,H)} =
(1, 1120 ,

11
20 ). r∗V allocates the rates more evenly in RDC(V,H)

than the Shapley value. For a WSN, r∗V is better than r̂V
in that the maximum energy consumption in source coding
max{r∗i : i ∈ V } < max{r̂i : i ∈ V } is less and therefore
the lifetime of WSN is prolonged.5 Here, r∗V is called the
egalitarian solution [17, 18] in RDC(V,H).6

Consider a more general quadratic programming problem

min{
∑
i∈V

r2i
wi

: rV ∈ RDC(V,H)}, (2)

where wV ∈ R|V |++ is a positive weight vector that could have
some practical interpretation: wi could denote the quality of
wireless channel at user i or the remaining energy in sensor

5The lifetime in a WSN is usually defined as the time to which the first
sensor node runs out of battery power [16]. Assume that the energy con-
sumption is linearly proportional to the source coding rate, switching from
the rate vector ( 3

2
, 3
10
, 3
10

) to (1, 11
20
, 11
20

) prolongs the lifetime by 1
2

.
6The advantage of the egalitarian solution in a peer-to-peer communica-

tion problem is also exemplified in [19].
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Algorithm 1: split algorithm (SPLIT)
input : a user subset C, an oracle that returns the value of

f(X) for X ⊆ C and a positive weight vector wC

output: r∗C = argmin{
∑

i∈C
r2i
wi

: rC ∈ RDC(C, f)}

1 begin
2 λ← f(C)

w(C)
;

3 get the maximal minimizer X̂ of

min{f(X)− λw(X) : X ⊆ C}; (3)

if X̂ = C then
4 r∗C ← λwC ;
5 else
6 r∗

X̂
= SPLIT(X̂, f,wX̂);

7 r∗
C\X̂ ←

f(X̂)

w(X̂)
wC\X̂ ;

8 r∗
C\X̂ ← r∗

C\X̂ + SPLIT(C \ X̂, g,wC\X̂), where

g(X) = f(XtX̂)−f(X̂)(
w(X)

w(X̂)
+1), ∀X ⊆ C\X̂;

r∗C = r∗
X̂
⊕ r∗

C\X̂ ;

9 endif
10 return r∗C ;
11 end

node i. The minimizer r∗V of (2) is called the weighted, or
generalized, egalitarian solution w.r.t. wV [20,21]: It reduces
to minimum `2-norm when wV = 1 = (1, . . . , 1) ∈ R|V |++.7

For a given weight vector wV , denote w : 2V 7→ R++ the
sum-weight function with w(X) =

∑
i∈X wi,∀X ⊆ V .

4. SPLIT ALGORITHM

To efficiently solve the problem (2), we exploit the submodu-
larity of the SW region RDC(V,H) as identified in Section 2.
The authors in [22, 23] showed that the minimizer of (2) can
be determined by recursively solving the submodular function
minimization (SFM) problem, based on which, we propose
the SPLIT algorithm in Algorithm 1. Its optimality is given
by the following theorem with the proof in Section 6.

Theorem 1. The output r∗V of the call SPLIT(V,H,wV ) is
the minimizer of (2).

Example 2. For wV = (3, 1, 3), we apply the SPLIT algo-
rithm to the system in Example 1. By calling SPLIT(V,H,wV ),
we have λ = 3

10 and X̂ = {3} being the maximal minimizer
of min{H(X) − λw(X) : X ⊆ V }. Since X̂ 6= V , we
call run SPLIT({3}, H,w3) and get r∗3 = 3

5 returned. We

7The solution of (2) also coincides with the min-max and max-min solu-
tions [22, Theorem 37]: r∗V = argminmaxi∈V { ri

wi
: rV ∈ RDC(V,H)}

and r∗V = argmaxmini∈V { ri
wi

: rV ∈ RDC(V,H)}.

set r∗{1,2} = H({3})
w3

w{1,2} = ( 1
5w1,

1
5w2) = ( 3

5 ,
1
5 ) and

call SPLIT({1, 2}, g,w{1,2}) where g(X) = H(X t {3}) −
H({3})(w(X)

w3
+ 1) for all X ⊆ {1, 2}. We get output

r∗{1,2} = (0.525, 0.175), which is added to the current rates
so that we have r∗{1,2} = ( 3

5 ,
1
5 ) + (0.525, 0.175) = ( 9

8 ,
3
8 ).

Finally, we have r∗V = r∗{1,2} ⊕ r
∗
3 = ( 9

8 ,
3
8 ,

3
5 ) at the output

which is the egalitarian solution w.r.t. wV = (3, 1, 3) in
RDC(V,H).

We then run SPLIT(V,H,wV ) for wV = 1, where
λ = 3

10 and X̂ = {2, 3} is the maximal minimizer of
min{H(X) − λ|X| : X ⊆ V }. Since X̂ 6= V , we call
SPLIT({2, 3}, H,w{2,3}) to get r∗{2,3} = ( 11

20 ,
11
20 ) and

SPLIT({1}, g,w{1}) to get r∗1 = 1 so that r∗V = r∗1⊕r∗{2,3} =

(1, 1120 ,
11
20 ) is the egalitarian solution in Fig. 1.

4.1. Complexity

For a submodular function f , we call min{f(X) : X ⊆ V }
a submodular function minimization (SFM) problem of size
|V |. We denote O(SFM(|V |)) the complexity for solving this
SFM problem, which is strongly polynomial [13, Chapter VI].
While the SFM algorithms in [24–27] vary in computation
complexity, the exact completion time of a SFM algorithm de-
pends on its size |V |.8 It is easy to see that, due to the submod-
ularity of H , the problem (3) in each recursion of the SPLIT
algorithm is a SFM of size |C| ≤ |V |.9 Since the number of
recursions is no greater than 2|V | − 1 [23, Theorem 9], the
overall complexity is upper bounded by O(|V | · SFM(|V |)).

4.2. Adaptive and Distributed Implementation

Steps 7 and 8 in the SPLIT algorithm indicate an adaptive rate
update method: In step 7, since r∗

C\X̂ ≥
f(X̂)

w(X̂)
wC\X̂ ,10 we

first assign f(X̂)

w(X̂)
wC\X̂ to r∗

C\X̂ and determine the remain-

ing rates by calling SPLIT(C \ X̂, g,wC\X̂) in step 8. It is
easy to see that r∗V ∈ P (H,≤) after each execution of step
7. Therefore, the SPLIT algorithm adaptively updates the rate
vector in the polyhedron P (H,≤) until it finally reaches r∗V .
See the examples in Fig. 2.

In addition, steps 6 to 8 in the SPLIT algorithm can be
implemented in a distributed manner: The set C is split into
two disjoint subsets X̂ and C \ X̂; r∗

X̂
and r∗

C\X̂ are inde-
pendently obtained and the computation can be done in paral-
lel. In Fig. 3, we show how to obtain the egalitarian solution
r∗V = ( 9

8 ,
3
8 ,

3
5 ) in Example 2 in a distributed manner. Since

the SPLIT algorithm recursively splits C into two, it usually

8For example, the complexity of the SFM algorithm proposed in [24] is
in the order of |V |5.

9The minimizers of a SFM problem form a lattice, where the maximal
and minimal subsets exist, and the maximal minimizer can be determined at
the same time when the SFM is solved [13].

10This is based on the proof of Theorem 1 in Section 6.
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Fig. 2. The rate adaptation resulted in the SPLIT algorithm
in Example 2: (0, 0, 0) → ( 11

20 , 0, 0) → (1, 1120 ,
11
20 ) to the

egalitarian solution w.r.t. wV = 1; (0, 0, 0) → ( 3
5 ,

1
5 , 0) →

( 9
8 ,

3
8 ,

3
5 ) to the egalitarian solution w.r.t. wV = (3, 1, 3);

results in a tree diagram where the splitting is from top to
bottom. If parallel computation is allowed, the completion
time in each split is dominated by the maximum size of SFM
max{|C \ X̂|, |X̂|}.

Experiment 1. Let |V | vary from 3 to 80. For each value
of |V |, the following procedure is repeated for 100 times: (a)
randomly generate ZV ; (b) run the SPLIT algorithm and get
the sum-size of SFM |C \ X̂| + |X̂| and maximum size of
SFM max{|C \ X̂|, |X̂|} and sum them up over recursions,
which indicate the completion time of centralized/nonparallel
and parallel implementations, respectively. We average the
sum-size and maximum size of SFM over repetitions and show
them in Fig. 4. It can be seen that the parallel implementation
is much faster when terminal/user set V becomes large.

5. CONCLUSION

We proposed the SPLIT algorithm for determining the egal-
itarian solution, a fair source coding rate vector, in the SW
region for the multiterminal lossless DC problem. We proved
that the SPLIT algorithm gradually updates a rate vector to the
egalitarian solution in strongly polynomial time. We showed
how it recursively splits the terminal/user set to allow dis-
tributed and parallel computation. We confirmed experimen-
tally that the parallel implementation greatly reduces the com-
pletion time as the number of terminals/users grows. We also
showed that, compared to the Shapley value, the egalitarian
solution balances energy consumed according to the source
coding rates, making it a more suitable fairness metric in dis-
tributed systems. Our future works include the implementa-
tion of SPLIT in a WSN deployment for precision agriculture,
and the study of the fairness in the DC problem in a given data
gathering tree.

6. PROOF OF THEOREM 1

It is shown in [22, Section 3.4] that problem (2) can be solved
by considering the problem min{H(X)−λw(X) : X ⊆ V }.

1 2 3

1 2

r∗1 =
9
8

r∗2 =
3
8

3

r∗3 =
3
5

Fig. 3. Distributed implementation of the SPLIT algorithm
in Example 2 for obtaining the egalitarian solution r∗V =
( 9
8 ,

3
8 ,

3
5 ) w.r.t. wV = (3, 1, 3): The user set V = {1, 2, 3} is

broken into two subsets {1, 2} and {3} so that r∗{1,2} and r∗3
can be determined in parallel.
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m
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M

nonparallel implementation
parallel implementation

Fig. 4. The result in Experiment 1: The average sum-size
and maximum size of SFM for the nonparallel and parallel
implementations, respectively, of the SPLIT algorithm.

The minimizer for all λ ∈ R is fully characterized by p ≤ |V |
critical points 0 = λ0 < λ1 < . . . < λp and corresponding
set chain ∅ = S0 ⊂ S1 ⊂ . . . ⊂ Sp = V , where Sj is the
maximal minimizer of min

{
H(X) − λjw(X) : X ⊆ V

}
.11

The minimizer r∗V of 2 can be obtained by r∗i = λjwi,∀i ∈
Sj \ Sj−1, j ∈ {1, . . . , p}.

The property of λj and Sj is derived in [23, Lemmas 5
and 6]: For j, j′ ∈ {0, . . . , p} : j > j′ and λ = φ(Sj , Sj′) =
H(Sj)−H(Sj′ )

w(Sj\Sj′ )
, λ = λj if j = j′ + 1; λj′+1 < λ < λj if

j > j′ + 1. It apparently suggests an recursive method to
determine r∗V : For λ = φ(Sj , Sj′), determine the maximal
minimizer X̂ of min{f(X)− λw(X) : X ⊆ V }; If X̂ = Sj ,
set r∗i = λwi for all i ∈ Sj \ Sj′ and terminate recursion;
Otherwise, repeat the same procedure for λ̄ = φ(Sj , X̂) and
λ = φ(X̂, Sj′). By initiate Sj = V , Sj′ = ∅ and f = H ,
this procedure determines r∗V . For Sj and Sj′ , define g(X) =

f(X t Sj′)− f(Sj′)(
w(X)
w(Sj′ )

+ 1),∀X ⊆ V ′ = Sj \ Sj′ and

λ′ = g(V ′)
w(V ′) . It can be shown that λ = φ(Sj , Sj′) = λ′ +

f(Sj′ )

w(Sj′ )
and g(X)−λ′w(X) = f(XtSj′)−f(Sj′)−λw(X)

for all X ⊆ V ′. Therefore, arg min{g(X) : X ⊆ V ′} t
Sj′ = arg min{f(X) − λw(X) : X ⊆ V } and λwSj\Sj′

=

λ′wSj\Sj′
+

f(Sj′ )

w(Sj′ )
wSj\Sj′

. Theorem holds.

11Also, for all j ∈ {1, . . . , p}, Sj−1 is the unique minimizer of
min

{
f(X)− λw(X) : X ⊆ V

}
if λj−1 < λ < λj .
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