
STREAMING INFLUENCE MAXIMIZATION IN SOCIAL NETWORKS BASED ON
MULTI-ACTION CREDIT DISTRIBUTION

Qilian Yu?, Hang Li?, Yun Liao†, and Shuguang Cui?

?Dept. of ECE, University of California, Davis, CA 95616, USA
†Dept. of ECE, University of California, San Diego, CA 92093, USA

ABSTRACT

In a social network, influence maximization is the problem
of identifying a set of users that own the maximum influence
ability across the network. In this paper, a novel credit dis-
tribution (CD) based model, termed as the multi-action CD
(mCD) model, is introduced to quantify the influence ability
of each user. Compared to existing models, the new model
can work with practical datasets where one type of action is
recorded for multiple times. Based on this model, influence
maximization is formulated as a submodular maximization
problem under a knapsack constraint, which is NP-hard. An
efficient streaming algorithm is developed to achieve (1

3 − ε)
approximation of the optimality. Experiments conducted on
real Twitter dataset demonstrate that the mCD model enjoys
high accuracy compared to the conventional CD model in es-
timating the total number of people who get influenced in a
social network. Furthermore, compared to the greedy algo-
rithm, the proposed single-pass streaming algorithm achieves
similar performance in terms of influence maximization, while
running several orders of magnitude faster.

Index Terms— Social Networks, Influence Maximization,
Credit Distribution, Submodularity, Streaming Algorithm.

1. INTRODUCTION

As information technology advances, information now spreads
at a speed faster than ever before. In particular, people are
ubiquitously connected by online social networks nowadays
and one person’s behavior may quickly affect other people’s
actions. For example, after a celebrity posts a new message on
Twitter, many followers read it and then retweet. It may follow
that the friends of these followers keep repeating such actions.
Consequently, the same tweet let more and more people get
involved. This phenomenon in social networks is referred to as
influence propagation. Here, such a celebrity could be called
the influencer. Note that, in general, there may be more than
one influencers for the same event.

It is easy to see that influencers may have significant im-
pacts on the dynamics in social networks, and thus the problem
of influencer identification has drawn great attention in both
academia and industry [1–4]. The influencer identification

problem is commonly formulated as an influence maximiza-
tion problem [5, 6]: Given an influence propagation model,
find k “seed" nodes such that the expected number of nodes
that eventually get “influenced" is maximized. There are two
commonly used influence propagation models, namely the In-
dependent Cascade (IC) model and the Linear Threshold (LT)
model, in both of which one of the most important parameters
is the edge weight. In existing works [5–9], the weight of each
edge is usually determined by one of the following methods:
1) assigning a constant (e.g., 0.01); 2) assigning a random
number from a small set (e.g., {0.1, 0.01, 0.001}); 3) assigning
the reciprocal of a node’s in-degree; or 4) assigning a value
learnt from real data.

Although accelerated greedy algorithms have been devel-
oped [10, 11] to mitigate the high computation cost in influ-
ence maximization, all works mentioned above [5–11] need
a significant number of Monte-Carlo simulations to calcu-
late the expected number of influenced nodes, which prevents
their implementation from being applied in analyzing large-
scale social networks. To bypass the need of edge weights,
a Credit Distribution (CD) model [12] was proposed to mea-
sure the influence only based on the history of user behaviors.
Following [12], some extended versions have also been pro-
posed [13, 14].

The datasets used in existing CD model based works
[12–14] usually have a simplified structure such that they only
record one timestamp of a certain action for each user, where
they implicitly assumed that each user takes the same action
for at most once. It is obvious that such a setup is oversim-
plified, since a user may take the same action multiple times.
Moreover, the user who repeatedly performs a certain action
would potentially influence more people than a user who just
performs such an action once. This issue can be easily verified
in social networks like Twitter or Facebook, where users may
participate in the discussion of a topic more than once.

In this paper, we propose a novel multi-action credit distri-
bution model (mCD) to perform data analysis on multi-action
event logs, where the same action for one particular user could
be recorded for multiple times if the user performs this ac-
tion repeatedly. The proposed mCD model uses the timing-
dependent “credit" to quantify the influence ability of each
user. Based on this model, we formulate a budgeted influence

6378978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

maximization problem, which aims to identify a set of users
with the maximum influence ability. In this problem, the ob-
jective function, i.e., the total influence ability, is submodular;
and a knapsack constraint is added to regulate the cost for user
selection. This problem is NP-hard; by utilizing submodular-
ity, we develop an efficient streaming algorithm to solve the
this problem, which can guarantee (1

3 − ε) of the optimality.
The rest of this paper is organized as follows. In Section 2,

we describe the design of the mCD model along with the for-
mulation of the influence maximization problem. In Section 3,
we introduce a learning algorithm to train the mCD model and
present a streaming algorithm to solve the budgeted influence
maximization problem. In Section 4, we use numerical results
to demonstrate the performance of the proposed mCD model
and the corresponding streaming algorithm over real Twitter
dataset. Section 5 concludes the paper.

2. MODEL DESIGN AND PROBLEM
FORMULATION

Given an online social network, we model it as an unweighted
directed graph G = (V, E) [12,13], where the node set V is the
set of all users and the edge set E indicates the social relation-
ship among all the users. Specifically, for any u, v ∈ V , there
is a directed edge (v, u) (from v to u) if v is socially followed
by u, which implies that v could potentially “influence” u.
The collected data from this social network is a multi-action
event log L with records in the form of (USER, ACTION,
TIME), where a corresponding tuple (u, a, t) ∈ L indicates
that user u performed action a at time t. The action a is from
a finite action setA. Here, the action is defined as a user being
involved in the same discussion topic.

Given that a user could perform the same action for mul-
tiple times, we let Au(a) denote the number of times that
user u performs action a. For some user-action pair (u, a),
if Au(a) ≥ 1, let ti(u, a) denote the timestamp when user u
performs acton a for the i-th time; otherwise, the timestamp
is not needed. Next, we let Au be the set of actions that are
performed by user u. Note that the conventional CD model
is a special case of the proposed mCD model, i.e., the con-
ventional model is equivalent to the case when Au(a) ≤ 1
for all u ∈ V and a ∈ A. Based on the directed graph G
and the multi-action event log L, for any action a ∈ A, we
define a directed graph G(a) that is generated from G accord-
ing to the propagation of action a. Specifically, we define
G(a) = (V(a), E(a)) such that V(a) = {v ∈ V|Av(a) ≥ 1}
and E(a) = {(v, u) ∈ E|t1(v, a) < t1(u, a), Au(a) ·Av(a) ≥
1}. Then, for any user u who performs action a, we let
Nin(u, a) = {v|(v, u) ∈ E(a)} denote the set of direct in-
fluencers for user u, i.e., the neighbors of user u who perform
action a earlier than user u. Next, we denote Nin(S, a) =
{v|v ∈ Nin(u, a), u ∈ S, v /∈ S} as the neighborhood of a
given user set S with respect to action a.

For a given action a, we define a timestamp set Tv,u(a) =
{ti(v, a)|ti(v, a) < t1(u, a), 1 ≤ i ≤ Av(a)} for every pair

of users u and v such that u ∈ V(a) and v ∈ Nin(u, a), which
is a collection of timestamps of v performing action a before
user u. Intuitively, each time when user v performs the action,
it causes influence on user u, since v and u have a directed
edge (v, u) in G(a). To take this effect into consideration,
we obtain a series of delays that can be expressed by the
timestamp differences, i.e., t1(u, a) − t, for all t ∈ Tv,u(a).
Note that the conventional CD model just simply uses one
delay to calculate the direct credit. Here, instead, we adopt an
effective delay from v to u on action a, which is defined as
∆tv,u(a) = 1/

∑
t∈Tv,u(a) (t1(u, a)− t)−1.

Note that ∆tv,u(a) equals the harmonic mean of {(t1(u, a)−
t)} devided by |Tv,u(a)|. Observing ∆tv,u(a), we obtain
some useful properties: 1) ∆tv,u(a) ≤ min{(t1(u, a) − t)}
for t ∈ Tv,u(a), and 2) ∆tv,u(a) decreases as |Tv,u(a)|
increases.

The definition of ∆tv,u(a) is inspired by the calculation of
parallel resistance, where the equivalent resistance of multiple
parallel resistors is mainly determined by the smallest one, and
whenever a new resistor is added in parallel, the equivalent
resistance decreases. Similarly, whenever user v taking action
a poses some influence on user u, it is sensible to assume that
the most recent action induces the most significant influence.
Thus, it is desired that the value of the effective delay ∆tv,u(a)
is dominated by min{t1(u, a) − t|t ∈ Tv,u(a)}. In addition,
if user u takes action a after its neighbor v takes it for multiple
times, the influence that v poses on u is stronger than those
who have only taken the action once. We next define direct
credit and indirect credit.

Direct Credit. This credit is what user u assigns to
user v when u takes the same action a after v. The direct
credit γv,u(a) is defined as γv,u(a) = exp (−∆tv,u(a)/τv,u) ·
R−1
u,a, where τv,u and Ru,a are normalization factors. Note

that the direct credit decays exponentially over the effec-
tive delay ∆tv,u(a). Such an exponential expression fol-
lows from the original definition of the CD model [12].
Here, τv,u is the mathematical average of the time de-
lays between v and u over all the actions: τv,u = 1

Av2u
·∑

a∈A
∑
t∈Tv,u(a) (t1(u, a)− t)/|Tv,u(a)|, where Av2u de-

notes the number of actions that v takes prior to u. In addition,
Ru,a is given by

Ru,a =
∑

v∈Nin(u,a)

exp (−∆tv,u(a)/τv,u),

which ensures that the sum of direct credits assigned to all the
neighbors of u for action a is 1.

To summarize, for u, v ∈ V , the direct credit given to v by
u with respect to action a is given as

γv,u(a) =

{
exp

(
−∆tv,u(a)

τv,u

)
·R−1

u,a, (v, u) ∈ E(a);
0, otherwise.

Indirect Credit. Suppose that (v, w) and (w, u) are in E(a)
such that v and u are connected indirectly. Then, user umay as-
sign all indirect credit to v via w as γv,w(a) ·γw,u(a). As such,

6379

the total credits given to v by u on action a can be defined iter-
atively as Γv,u(a) =

∑
w∈Nin(u,a) Γv,w(a) · γw,u(a), where

Γv,v(a) = 1. Then, the average credit given to v by u with
respect to all actions is defined as:

κv,u =

{
0, |Au| = 0;

1
|Au|

∑
a∈A Γv,u(a), otherwise.

Moreover, for a set of influencers S ⊆ V(a) on action a,
we have

ΓS,u(a) =

{
1, u ∈ S;∑
w∈Nin(u,a) ΓS,w(a) · γw,u(a), otherwise.

Similarly, we define the average credit given to S by u with
respect to all the actions as:

κS,u =

{
0, |Au| = 0;

1
|Au|

∑
a∈A ΓS,u(a), otherwise.

Note that the average credit κS,u can also be interpreted as
the “influence ability” of the set S on a particular user u, and
the value of κS,u indicates how influential S is. Finally, we
define σmCD(S) as the influence ability of S over the whole
network, which is given as σmCD(S) =

∑
u∈V κS,u.

Budgeted Influence Maximization Problem. While aim-
ing to maximize the influence ability over the network, we con-
sider the budget of selecting users into the influencer set S as
the major constraint. Suppose there are n users in the dataset.
Denote a positive n× 1 weight vector g = (g1, g2, . . . , gn)T

as the cost for selecting each user, and IS = (I1, I2, · · · , In)T

as an n× 1 characteristic vector of S, where Ii = 1 if i ∈ S;
Ii = 0, otherwise. Let b be the total available budget on the
cost for selecting users into S. Then, the budgeted influence
maximization problem could be cast as

maximize
S⊆V

σmCD(S)

subject to gT IS ≤ b,
(1)

where we can normalize problem (1) such that each entry in
g is no less than 1 and the number of selected users will not
exceed b. For the rest of this paper, we only consider the
standardized problem. Note that σmCD(S) is a lower bound
of the total number of users that finally get influenced over
all actions, as shown in Proposition 1. Due to the page limit,
the proof is skipped, which could be referred to our Arxiv
version [15].
Proposition 1. σmCD(S) ≤ | ∪a∈A V(a)|.

Therefore, problem (1) is to find a subset S from the
ground set V to maximize a lower bound of the total num-
ber of users that finally get influenced over all actions.

Similar to the argument in [12], it is easy to show that the
objective function of problem (1) is monotone and submodular.
Therefore, problem (1) is a submodular maximization problem
under a knapsack constraint, which has been proved to be NP-
hard [16]. In general, such a problem can be approximately

solved by greedy algorithms [10,16]. However, due to the large
volume of online social network datasets, the implementation
of greedy algorithms is not practical. In the next section, we
develop an efficient streaming algorithm to solve the budgeted
influence maximization problem under the mCD model.

3. ALGORITHM

The proposed algorithm is divided into the following mod-
ules. The “Model Learner” is designed to learn the parameters
{τv,u}, the mathematical average time delay between each
pair of v and u over all actions, and {Au(a)}, the frequency of
u taking action a, from the training dataset before solving the
optimization problem, such that the algorithm can deal with a
newly arriving dataset or test set much more efficiently. Then,
for the new or test set of data, we start with the preprocessing
module “Log Scanner”, which scans the dataset to calculate
the total credit Γv,u(a) assigned to user v by u for action a
by using the already learned {τv,u} and {Au(a)} from the
training set. The last but the most important module “Problem
Solver” solves the influence maximization problem (1) based
on {Γv,u(a)} and outputs the seed set.

Training Set
Model Learner

Log Scanner

Problem Solver
(Algorithms 1)

New or Test Set

Event Log

8

Based on the above discussion and the introduced notations, we now arrive at the form of

�v,u(a), which is given by

�v,u(a) = exp

✓
��tv,u(a)

N1

◆
· N2,

where N1 and N2 are normalizers. To be specific, N1 is given by a form of mathematic

average time delay between v and u on all actions:

⌧v,u =
1

Av2u
·
X

a2A

P
t2Tv,u(a) (t1(u, a) � t)

|Tv,u(a)| ,

and N2 is given by

Ru,a =
X

v2Nin(u,a)

exp

✓
��tv,u(a)

⌧v,u

◆

to ensure that the sum of direct credits assigned to neighbors of u for action a is 1.

To sum up, the direct credit given to v by u on action a, where v, u 2 V is written as

�v,u(a) =

8
<
:

0 v /2 E(a) or u /2 E(a)

exp
⇣
��tv,u(a)

⌧v,u

⌘
· R�1

u,a otherwise.

Besides the direct credit �v,u(a), we also introduce backwards credits such that not only

u gives credit to the users v 2 Nin(u, a), but also to its parents. Suppose v is not directly

connected to u, but we have (v, w) and (w, u) in E(a). So the backwards credit to v by u on

action a is given by �v,w(a) · �w,u(a). Following this idea, we finally define the total credit

given to v by u on action a as �v,u(a), which considers both direct credits and backwards

credits as follow:

�v,u(a) =
X

w2Nin(u,a)

�v,w(a) · �w,u(a),

where the base of the recursion is �v,v(a) = 1. Then the total credit given to v by u on all

action is defined as the average of total credit on each single action:

v,u =
1

|A|
X

a2A
�v,u(a).

We then define the total credit given to a set of users S ✓ V(a) by user u on action a as

follows:

�S,u(a) =

8
<
:

1 u 2 S
P

w2Nin(u,a) �S,w(a) · �w,u(a) otherwise

DRAFT

Seed Set

Fig. 1: Overall Structure for Influence Maximization.
We start with a cardinality constraint as a special case of

the knapsack constraint (by applying the same weight for every
user). Given k as the cardinality limit for S, the simplified
problem (also known as the conventional influence maximiza-
tion problem) is cast as

maximize
S⊆V

σmCD(S)

subject to |S| ≤ k.
(2)

We then propose a novel streaming algorithm to solve
this problem. Let m := maxx∈V σmCD(x); we construct an
optimum value candidate set O := {(1 + ε)i|i ∈ Z,m ≤
(1 + ε)i ≤ k ·m}, which leads to a useful conclusion given in
Lemma 1. The proof could be found in the Arxiv version [15].

Lemma 1. LetO := {(1 + ε)i|i ∈ Z,m ≤ (1 + ε)i ≤ k ·m}
for some ε with 0 < ε < 1. Then there exists a value c ∈ O
such that (1 − ε)OPT ≤ c ≤ OPT, with OPT denoting the
optimal value for problem (2).

However, the value of m above usually cannot be obtained
in advance. In this case, we may treat m as a variable and up-
date it during the iterations over the user selection. Specifically,
we modifyO asO = {(1+ε)i|i ∈ Z,m ≤ (1+ε)i ≤ 2k ·m},
and maintain the maximum marginal value when the algorithm
scans over the ground set. Whenever m gets updated, the al-
gorithm updates the set O accordingly. For each user in the

6380

ground set, we scan each element c in set O, and add that
user into Sc as long as the marginal gain is larger than c

2k and
|Sc| ≤ k. The corresponding pseudo-code is presented in Al-
gorithm 1 and the performance of the algorithm is guaranteed
in Theorem 1, whose proof is given in the Arxiv version [15].

Algorithm 1 STREAMING_ALGORITHM(k, UC)

1: for each x ∈ V
2: m := max{m,σmCD({x})}
3: O := {(1 + ε)i|i ∈ Z,m ≤ (1 + ε)i ≤ 2k ·m}.
4: for c ∈ O
5: if marginal gain of c is over c

2k and |Sc| < k
6: Sc := Sc ∪ {x}.
7: end if
8: end for
9: end for

10: return S := argmaxSc,c∈OσmCD(Sc).

Theorem 1. Algorithm 1 produces a solution S such that
σmCD(S) ≥

(
1
2 − ε

)
OPT.

Next, to solve problem (1), we first modify the threshold in
line 5 of Algorithm 1 to 2qgx

3b , where q ∈ Q := {(1 + 3ε)i|i ∈
Z, m

1+3ε ≤ (1 + 3ε)i ≤ 2b ·m}, gx is the weight of user x, and
b is the total budget. Moreover, the modified algorithm keeps
searching for a particular user who has dominated influences.
The property of such a user is described by Theorem 2, whose
proof is given in our Arxiv version [15]. At the end of the
modified algorithm, we might have two types of sets: one is
collected by the modified threshold, and the other exists if a
user described in Theorem 2 is found. The set with a higher
objective value will be the final algorithm output. Such an
algorithm can solve problem (1) with (1

3 − ε)-approximation
to the optimal solution according to Theorem 1 in [17].
Theorem 2. Assume q ∈ [(1 − 3ε)OPT,OPT], x satisfies
gx ≥ b

2 , and its marginal is larger than 2qgx
3b . Then, we have

σmCD(x) ≥
(

1
3 − ε

)
OPT.

4. EXPERIMENTAL RESULTS

We conduct our experiments on a reduced Twitter dataset [18]
containing about 17,000 users and 100 actions to evaluate
the mCD model and the corresponding streaming algorithm.
Specifically, we are interested in the following performance
metrics: 1) the influence ability of the seed set provided by
our proposed streaming algorithm; 2) the gap between the
output influence ability and the number of people that truly
get influenced; and 3) the running time of the algorithm. All
experiments are conducted at a server with a 3.50GHz Quad-
Core Intel Xeon CPU E3-1245 and 32GB memory.

Influence Ability of the Seed Set. First, we compare the
influence ability of different seed sets obtained by our proposed
streaming algorithms and the CELF [11] algorithm under the
same mCD model. From Fig. 2a, we observe that the seed
set provided by our streaming algorithm can achieve utilities
close to the CELF algorithm. For instance, when b = 500

and the weights of selecting users are positively related to
the number of followers, the influence ability of the seed set
provided by the streaming algorithm is only 0.1% less than the
CELF algorithm. Therefore, we conclude that our proposed
streaming algorithm is sufficient to identify seed sets with
close influence ability to the CELF algorithm, but with much
faster speed as discussed next. later.

Actions in Increasing Order of Popularity

of

 P
eo

pl
e

Pe
rfo

rm
in

g
A

ct
io

ns

0 200 400 600 800

800

600

400

200

0

(a) (b) (c)

Fig. 2: a) Influence Ability Comparison. b) Running Time
Comparison. c) Estimated Influence for Actions in Test Set.

Algorithm Running Time. Unlike the CELF algorithm,
the proposed streaming algorithm only requires one scan over
the user set. Therefore, the resulting lower computation com-
plexity makes the algorithm more practical and scalable when
the number of elements in the ground set is large. In Fig. 2b, for
example, when the budget is set to be 500, it takes more than
3,800 seconds to complete the whole process in CELF, while
the streaming algorithm only takes 5.3 seconds. Meanwhile,
the streaming algorithm achieves almost the same performance
as CELF, which implies that our proposed streaming algorithm
is both efficient and effective.

Estimation on the Number of Influenced People We
also investigate how the mCD model performs in estimating
the number of people that get influenced in the network, by
picking the most popular 950 actions from the original dataset,
with the seed set size fixed as 50. We sort actions with increas-
ing popularity. It can be observed in Fig. 2c that the results
obtained by both the CD and the mCD models are smaller than
the actual number of users performing the corresponding ac-
tion, while the mCD model are closer to the true values, which
means that the estimation with our model is more accurate for
a given seed set size.

5. CONCLUSION

In this work, we extended the conventional CD model to the
mCD model in dealing with the multi-action event logs and
analyzing the influence ability of users in social networks.
Specifically, we re-designed the credit assignment method in
the CD model by utilizing a modified harmonic mean to handle
multi-action event logs, which achieves a higher accuracy
in estimating the total number of people that get influenced.
Based on this new model, an efficient streaming algorithm was
developed with (1

3 − ε)-approximation of the optimal value for
the corresponding budgeted influence maximization problem.
Experiments showed that the mCD model is more accurate
compared to the conventional CD model, and the proposed
algorithm can achieve similar performance to the CELF greedy
algorithm, but several orders of magnitude faster.

6381

6. REFERENCES

[1] C. Asavathiratham, S. Roy, B. Lesieutre, and G. Vergh-
ese, “The influence model,” IEEE Control Systems, vol.
21, no. 6, pp. 52–64, Decemeber 2001.

[2] C. Asavathiratham, A tractable representation for the
dynamics of networked Markov chain, Ph.D. thesis, Dept.
of ECS, MIT, 2000.

[3] P. Domingos and M. Richardson, “Mining the network
value of customers,” in Proceedings of the 7th ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, San Francisco, August 2001, ACM,
pp. 57–66.

[4] M. Richardson and P. Domingos, “Mining knowledge-
sharing sites for viral marketing,” in Proceedings of the
8th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, Demonton, Alberta,
Canada, July 2002, ACM, pp. 61–70.

[5] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the
spread of influence through a social network,” in Proceed-
ings of the 9th ACM SIGKDD international conference
on Knowledge discovery and data mining, Washington,
DC, August 2003, ACM, pp. 137–146.

[6] W. Chen, Y. Wang, and S. Yang, “Efficient influence
maximization in social networks,” in Proceedings of the
15th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, New York City, June
2009, ACM, pp. 199–208.

[7] W. Chen, C. Wang, and Y. Wang, “Scalable influence
maximization for prevalent viral marketing in large-scale
social networks,” in Proceedings of the 16th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, Washington, DC, July 2010,
ACM, pp. 1029–1038.

[8] A. Goyal, F. Bonchi, and L.V.S. Lakshmanan, “Learning
influence probabilities in social networks,” in Proceed-
ings of the third ACM international conference on Web
search and data mining, New York City, February 2010,
ACM, pp. 241–250.

[9] K. Saito, R. Nakano, and M. Kimura, “Prediction of
information diffusion probabilities for independent cas-
cade model,” in International Conference on Knowledge-
based and Intelligent Information and Engineering Sys-
tems, Berlin, Heidelberg, September 2008, ACM, pp.
67–75.

[10] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Van-
Briesen, and N Glance, “Cost-effective outbreak de-
tection in networks,” in Proceedings of the 13th ACM

SIGKDD international conference on Knowledge discov-
ery and data mining, San Jose, August 2007, ACM, pp.
420–429.

[11] A. Goyal, W. Lu, and L.V.S. Lakshmanan, “Celf++: opti-
mizing the greedy algorithm for influence maximization
in social networks,” in Proceedings of the 20th interna-
tional conference companion on World Wide Web, New
York, March 2011, ACM, pp. 47–48.

[12] A. Goyal, F. Bonchi, and L.V.S. Lakshmanan, “A data-
based approach to social influence maximization,” in
Proceedings of the VLDB Endowment, vol. 5, no. 1, pp.
73–84, September 2011.

[13] X. Deng, Y. Pan, Y. Wu, and J. Gui, “Credit distribution
and influence maximization in online social networks
using node features,” in Proceedings of the 12th Inter-
national conference on Fuzzy systems and knowledge
discovery, Zhangjiajie, China, August 2015, IEEE, pp.
2093–2100.

[14] Y. Pan, X. Deng, and H. Shen, “Credit distribution for in-
fluence maximization in online social networks with time
constraint,” in Proceedings of 2015 IEEE International
Conference on Smart City, Chengdu, China, Decemeber
2015, IEEE, pp. 255–260.

[15] Q. Yu, H. Li, Y. Liao, and S. Cui, “Fast budgeted
influence maximization over multi-action event logs,”
ArXiv:1710.02141, 2017.

[16] M. Sviridenko, “A note on maximizing a submodular
set function subject to a knapsack constraint,” Operation
Research Letters, vol. 32, no. 1, pp. 41–43, January 2004.

[17] Q. Yu, E. L. Xu, and S. Cui, “Submodular maximization
with multi-knapsack constraint and its applications in
scientific literature recommendations,” in Proceedings of
2016 IEEE Global Conference on Signal and Information
Processing, Washington D.C., Decemeber 2016, IEEE,
pp. 1295–1299.

[18] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford
large network dataset collection,” http://snap.stanford.
edu/data, June 2014.

6382

