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ABSTRACT

Due to the grow of modern dataset size and the desire to har-
ness computing power of multiple machines, there is a recent
surge of interest in the design of distributed machine learning
algorithms. However, distributed algorithms are sensitive to
Byzantine attackers who can send falsified data to prevent the
convergence of algorithms or lead the algorithms to converge
to value of the attackers’ choice. Some recent work proposed
interesting algorithms that can deal with the scenario when up
to half of the workers are compromised. In this paper, we pro-
pose a novel algorithm that can deal with an arbitrary number
of Byzantine attackers.

Index Terms— Byzantine attacker, convergence, dis-
tributed gradient descent.

1. INTRODUCTION

The design of distributed optimization algorithms has at-
tracted significant recent research interests [1, 2, 3, 4, 5]. The
surge of interest in this area is motivated by many factors. For
example, as the size of modern data keeps growing, it may
not be possible to fit all data in one machine.

In a typical distributed optimization setup, there are one
parameter server and multiple working machines. Most of
the existing work in this area assumes that these working
machines are honest. However, in practice, there is a risk
that some of the working machines might be compromised.
Compromised machines may send falsified information to the
server to prevent the convergence of the optimization algo-
rithm or to lead the algorithm to converge to a value chosen
by these attackers. For example, as shown in [6, 7], the pres-
ence of even a single Byzantine worker can prevent the con-
vergence of distributed gradient descent algorithm.

There have been some interesting recent work to design
distributed machine learning algorithm [6, 7] that can deal
with Byzantine attacks. The main idea of these work is to
compare information received from all workers, and compute
a quantity that is robust to attackers for algorithm update. For
example, the algorithm in [7] uses the geometric median of
gradient information received from workers for parameter up-
date. The algorithm in [6] chooses the gradient vector that is
closest (in certain sense) to its m − p neighbors, where m is

the number of working machines and p is the number of com-
promised workers, to be the estimated gradient for parameter
updating. [6, 7] show that their algorithms can successfully
converge even if up to half of all workers are compromised.
However, once more than half of the workers are compro-
mised, the algorithms in these interesting work will not con-
verge.

In this paper, we propose a new robust distributed gra-
dient descent algorithm that can converge regardless of the
number of compromised workers. The main idea is to ask the
server to randomly select a small subset of data and compute
a noisy gradient based on this small dataset. Even though the
computed gradient is very noisy, it can be used as the ground
truth to filter out information from attackers. In particular,
once the server receives gradient information from workers, it
compares the gradient information from each worker with the
noisy gradient it has computed. If the distance between the
gradient from worker and the noisy gradient computed by it-
self is small, the server accepts the gradient information from
that worker as authentic. After the comparison step, the server
then computes the average of all accepted gradient and its own
noisy gradient as the final estimated gradient for update. We
prove that the algorithm can converge to the neighborhood of
the optimal value regardless of the number of compromised
workers. We show this result by proving that the distance
between the estimated gradient and the true gradient can be
universally bounded.

The paper is organized as follows. In Section 2, we de-
scribe the model. In Section 3, we describe the proposed
gradient descent algorithm and prove the convergence of the
proposed algorithm. In Section 4, we provide numerical ex-
amples to validate the theoretic analysis. Finally, we offer
several concluding remarks in Section 5. Due to space limita-
tions, we only provide outline of proofs.

2. MODEL

We consider a system where the data X ∈ X ⊂ Rn is gener-
ated randomly from a distribution parameterized by unknown
vector θ taken value from a set Θ ⊂ Rd. Our goal is to infer
the unknown parameter θ from data samples. In particular,
consider a loss function f : X × Θ → R, with f(x, θ) being
the risk induced by data point x under the model parameter
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θ. We aim to find the model parameter θ∗ that minimizes the
population risk F (θ):

θ∗ ∈ arg min
θ∈Θ

F (θ) , E[f(X, θ)]. (1)

In this paper, we assume that F (θ) satisfies the following
typical assumption.
Assumption 1. The population risk function F : Θ → R
is L-strongly convex, and differentiable over Θ with M -
Lipschitz gradient. That is for all θ, θ′ ∈ Θ,

F (θ′) ≥ F (θ)+ < ∇F (θ), θ′−θ > +L ‖ θ′−θ ‖2 /2, (2)

and ‖ ∇F (θ′) −∇F (θ) ‖≤ M ‖ θ′ − θ ‖, in which ‖ · ‖ is
the `2 norm.

When the distribution of X is known, the population risk
can be evaluated exactly and θ∗ can be computed by solving
the above problem. However, as the distribution is unknown
in our setup, it is typical to approximate the population risk
F (θ) using the observed data samples. We assume that there
exist N independently and identically distributed data sam-
ples Xi, with i = 1, 2, · · · , N . Instead of minimizing the
population risk (1) directly, we minimize the empirical risk

min
θ∈Θ

1

N

N∑
i=1

f(Xi, θ). (3)

In a typical distributed optimization setup, there are one
server and m working machines in the system. These N
data samples are distributed into these m working machines,
and the server machine can communicate with all working
machines synchronously. Let Sj be the set of data samples
that the j-th worker has. In a system with data shuffling, Sj
changes over iterations, while in a system without shuffling,
Sj is fixed. Our algorithm and proof hold regardless whether
there is data shuffling or not.

In the classic batch gradient descent, one solves (3) using
distributed gradient descent. In particular, at iteration t, each
worker j ∈ [1,m] calculates∇f (j)

(θt−1) based on local data

∇f (j)
(θt−1) =

1

|Sj |
∑
i∈Sj

∇f(Xi, θt−1), (4)

and sends it back to the server. After receiving information
from all machines, the server updates the parameter using

θt = θt−1 − η
1

m

m∑
i=1

∇f (j)
(θt−1) (5)

and sends the updated parameter θt to working machines.
Here η is the step size. This process continues until a certain
stop criteria is satisfied.

In this paper, we consider an adversary setup, in which an
unknown subset of working machines might be comprised.
Furthermore, the set of compromised working machines

might also change over time. If a machine is compromised,
instead of the gradient calculated from local data, it can send
arbitrary information to the server. In particular, let Bt denote
the set of compromised machines at iteration t, the server
receives data g(j)

t (θt−1) from j-th worker with

g
(j)
t (θt−1) =

{
∇f (j)

(θt−1) j /∈ Bt
? j ∈ Bt

, (6)

in which ? denotes an arbitrary vector chosen by the attacker.
In this case with Byzantine attackers, if one continues to

use the classic batch gradient as in (5), the algorithm will fail
to converge even if there is only one attacker [6, 7]. As dis-
cussed above, [6, 7] designed algorithm that converges if the
number of compromised machines p is less than m/2 (i.e.,
more than half of the machines are not compromised). The
goal of our paper is to design a robust batch gradient descent
algorithm that can tolerate any number of Byzantine attack-
ers.

3. ALGORITHM AND ANALYSIS

In this section, we describe our algorithm that can deal with
an arbitrary number of Byzantine attackers, and analyze its
convergence property.

A. Algorithm

The main idea of our algorithm is to ask the server to ran-
domly select a small set of data points S0 at very beginning.
Once S0 is selected, it is fixed throughout the algorithm. Then
at each iteration t, the server calculates a noisy gradient using
data points in S0:

∇f (0)
(θt−1) =

1

|S0|
∑
i∈S0

∇f(Xi, θt−1).

Different choices of the size of S0 will strike a tradeoff be-
tween convergence speed and computational complexity.

The server then compares g(j)
t (θt−1) received from ma-

chine j with ∇f (0)

t (θt−1). The server will accept g(j)
t (θt−1)

as authentic value and use it for further processing, if

‖ g(j)
t (θt−1)−∇f (0)

t (θt−1) ‖≤ ξ1 ‖ ∇f
(0)

t (θt−1) ‖, (7)

where ξ1 < 1 is a constant.
Assuming there are k values (which is a random variable)

being accepted after the comparison step, we denote these k
values as q(1)

t (θt−1), ..., q(k)
t (θt−1). Then the server updates

the parameters as θt = θt−1 − ηG(θt−1), where

G(θt−1) =
1

k + 1

(
k∑
l=1

q
(l)
t (θt−1) +∇f (0)

t (θt−1)

)
. (8)

Main steps of the algorithms are listed in Table 1.
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Table 1. Proposed algorithm
Algorithm Iteration t ≥ 1
Parameter server:
Initialize: Randomly selects θ0 ∈ Θ;randomly selects S0;
1: Broadcasts the current model parameter estimator θt−1

to all working machines;

2: Computes∇f (0)

t (θt−1) using S0;
3: Waits to receive all the gradients from the m machines;
Let g(j)

t (θt−1) denote the value received from machine j;

4: Compares g(j)
t (θt−1) with∇f (0)

t (θt−1);If

‖ g(j)
t (θt−1)−∇f (0)

t (θt−1) ‖≤ ξ1 ‖ ∇f
(0)

t (θt−1) ‖,
the server accepts it and sets it to be q(l)

t (θt−1);
5: Assume there are k acceptable value, then

G(θt−1)← 1
k+1

(∑k
l=1 q

(l)
t (θt−1) +∇f (0)

t (θt−1)
)

;
6:Updates θt ← θt−1 − ηG(θt−1);
Working machine j:

1: Computes the gradient∇f (j)
(θt−1);

2: If machine j is honest,

it sends∇f (j)
(θt−1) back to the server;

If machine j is compromised,
it sends the value determined by the attacker;

B. Convergence Analysis

In the following, we analyze the convergence property of the
proposed algorithm. Before presenting detailed analysis, here
we describe the high level ideas. It is well known that if
∇F (θ) is available, then the gradient descent algorithm will
converge to θ∗ exponentially fast [7]. The main idea of our
proof is to show that the distance between G(θ) and ∇F (θ)
is universally bounded in Θ regardless the number of attack-
ers. Hence, G(θ) is a good estimate of ∇F (θ). As the result,
we can then show that the proposed algorithm converges.

Lemma 1. For an arbitrary number of attackers, the distance
between G(θ) and ∇F (θ) is bounded as

‖G(θ)−∇F (θ)‖ ≤ (1 + ξ1)‖∇F (θ)−∇f (0)
(θ)‖

+ξ1‖∇F (θ)−∇F (θ∗)‖,∀θ. (9)

Using the M -Lipschitz gradient assumption in Assump-
tion 1, the term ‖∇F (θ) −∇F (θ∗)‖ can be bounded. In the

following, we show that the term ‖∇F (θ) − ∇f (0)
(θ)‖ can

also be bounded. For this, we need to present several assump-
tions and intermediate results.
Assumption 2. There exist positive constants σ1 and α1

such that for any unit vector v ∈ B, 〈∇f(X, θ∗), v〉 is sub-
exponential with σ1 and α1, that is,

sup
v∈B

E[exp(λ〈∇f(X, θ∗), v〉)] ≤ eσ
2
1λ

2/2,∀|λ| ≤ 1/α1,

where B denotes the unit sphere θ : ‖θ‖2 = 1.

With this assumption, we first have the following lemma
that shows 1

|S0|
∑
i∈S0 ∇f(Xi, θ

∗) concentrates around∇F (θ∗).

Lemma 2. Under Assumption 2, for any δ ∈ (0, 1), let

∆1 =
√

2σ1

√
(d log 6 + log(3/δ))/|S0|, (10)

and if ∆1 ≤ σ2
1/α1, then

Pr

{∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ
∗)−∇F (θ∗)

∥∥∥∥∥ ≥ 2∆1

}
≤ δ

3
.

Second, we define gradient difference h(x, θ) , ∇f(x, θ)−
∇f(x, θ∗) and assume that for every θ, h(x, θ) normalized
by ‖ θ − θ∗ ‖ is also sub-exponential.
Assumption 3. There exist positive constants σ2 and α2 such
that for any θ ∈ Θ with θ 6= θ∗ and any unit vector v ∈ B,
〈h(X, θ)−E[h(X, θ)], v〉/ ‖ θ−θ∗ ‖ is sub-exponential with
σ2 and α2, that is,

sup
θ∈Θ,v∈B

E
[
exp

(
λ〈h(X, θ)− E[h(X, θ)], v〉

‖θ − θ∗‖

)]
≤ eσ

2
2λ

2/2,∀|λ| ≤ 1

α2
.

This allows us to show that 1
|S0|

∑
i∈S0 h(Xi, θ) concen-

trates on E[h(X, θ)] for every fixed θ:

Lemma 3. Suppose Assumption 3 holds. For any δ ∈ (0, 1)
and fix any θ ∈ Θ, let ∆′1 =

√
2σ2

√
(d log 6 + log(3/δ))/|S0|,

and if ∆′1 ≤ σ2
2/α2, then

Pr

{∥∥∥∥∥ 1

|S0|
∑
i∈S0

h(Xi, θ)− E[h(X, θ)]

∥∥∥∥∥ ≥ 2∆′1‖θ − θ∗‖

}
≤ δ

3
.

Assumption 4. For any δ ∈ (0, 1), there exists an M ′ =
M ′(δ) such that

Pr

{
sup

θ,θ′∈Θ:θ 6=θ′

‖∇f(X, θ)−∇f(X, θ′)‖
‖θ − θ′‖

≤M ′
}
≥ 1− δ

4
.

Assumption 4 ensures that ∇f(X, θ) is M ′-Lipschitz
with high probability.

With these assumptions and intermediate lemmas, we are
ready to state our universal bound for ‖∇F (θ)−∇f (0)

(θ)‖.

Proposition 1. Suppose Assumptions 2-4 hold, and Θ ⊂
{θ :‖ θ − θ∗ ‖≤ r

√
d} for some positive parameter r. For

any δ ∈ (0, 1),

Pr{∀θ : ‖∇F (θ)−∇f (0)
(θ)‖ ≤ 4∆2‖θ−θ∗‖+2∆1} ≥ 1−δ,

(11)
in which ∆1 is defined in (10) and ∆2 =

√
2σ2

√
(τ1 + τ2)/|S0|,

with τ1 = d log 6 + d log((M ∨M ′)/σ2), and
τ2 = 0.5d log(|S0|/d) + log(3/δ) + log(r

√
d).
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Proof. (Outline): The proof relies on the typical ε-net argu-
ment. Let Θε = {θ1, ..., θNε} be an ε-cover of Θ. Then fix
any θ ∈ Θ, there exists a θj ∈ Θε such that ‖ θ − θj ‖≤ ε.
By triangle inequality,∥∥∥∇f (0)

(θ)−∇F (θ)
∥∥∥ ≤ ‖∇F (θ)−∇F (θj)‖

+
∥∥∥∇f (0)

(θ)−∇f (0)
(θj)

∥∥∥+
∥∥∥∇f (0)

(θj)−∇F (θj)
∥∥∥ .

These terms can be upper bounded using assumption 1, as-
sumption 4 and Lemma 3. We can then employ union bound
over Θε to finish the argument.

Combining Lemma 1 and Proposition 1, we know that
G(θ) is a good approximation of ∇F (θ). Using this fact, we
have the following convergence result.

Theorem 1. If Assumptions 1-4 hold, then regardless the
number of attackers, we have probability at least 1− δ that

‖θt − θ∗‖ ≤ (1− ρ)t‖θ0 − θ∗‖+ (2η∆1 + 2ηξ1∆1)/ρ,

in which ρ = 1−
(√

1− L2

4M2 + 4∆2η + ηξ1(4∆2 +M)

)
.

This theorem shows that under the event which would
happen with highly probability, the estimated θ can converge
to the neighborhood of θ∗ exponentially fast.

4. NUMERICAL RESULTS

In this section, we provide a numerical example to illustrate
the analytical results. In the example, we focus on linear re-
gression, in which Yi = XT

i θ
∗ + εi, i = 1, 2, · · · , N, where

Xi ∈ Rd, θ∗ is a d × 1 vector and εi is noise. In the simula-
tion, we use synthesized data. We set the dimension d = 20,
the total number of data N = 10000, the number of worker
m = 100, and evenly distribute data among these machines.
We set |S0| = 50. Furthermore, we set ξ1 = 0.975 and let
θ∗

i.i.d.∼ N (0, 4). Here N (µ, σ2) denotes Gaussian variables
with mean µ and variance σ2. After θ∗ is generated, we fix it.
We then generate each entry of Xi using N (0, 16), and gen-
erate Yi using the linear relationship mentioned above. We
illustrate our results with two different attacks: 1) Inverse at-
tack, in which the attackers inverse the correct gradient val-
ues; and 2) Random attack, in which the attackers randomly
generate gradient value. In our simulation, we compare three
algorithms: 1) Gradient descent using only data from S0; 2)
Algorithm proposed in [7]; and 3) The proposed algorithm
described in Table 1. Due to space limitation, we only show
the result for the case with 95 attackers, i.e., most of the ma-
chines are compromised.

Figure 1 plots the l2 norm of the difference between esti-
mated θt and θ∗ for t = 1, · · · , 250 with the inverse attack.
It is clear from the figure that the algorithm in [7] does not
converge as the number of attackers is more than half of the

0 50 100 150 200 250
0

5

10

15
95 inverse attack

Fig. 1. Inverse attack.

total number of machines. The proposed algorithm, however,
still converges. Furthermore, even though there are only 5
honest workers and the server does not know the identities of
these honest workers, the proposed algorithm can still benefit
from these workers, as the proposed algorithm outperforms
the algorithm that only relies on information from S0.

0 50 100 150 200 250 300
0

5

10

15
95 random attack 

Fig. 2. Random attack.

Figure 2 shows the l2 norm of the difference between esti-
mated θt and θ∗ for t = 1, · · · , 300 for the case with random
attack. Similar to the scenario with inverse attack, our algo-
rithm outperforms the algorithm that uses S0 only, and both
algorithms converges while the algorithm in [7] diverges.

5. CONCLUSION

In this paper, we have proposed a robust gradient descent al-
gorithm that can tolerant an arbitrary number of Byzantine
attackers. We have shown that the proposed algorithm con-
verges to the true value. We have also provided numerical
examples to illustrate the performance of the proposed algo-
rithm and compared it with those of other algorithms.
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