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ABSTRACT

The sum-of-correlations (SUMCOR) generalized canonical corre-
lation analysis (GCCA) aims at producing low-dimensional repre-
sentations of multiview data via enforcing pairwise similarity of the
reduced-dimension views. SUMCOR has been applied to a large va-
riety of applications including blind separation, multilingual word
embedding, and cross-modality retrieval. Despite the NP-hardness
of SUMCOR, recent work has proposed effective algorithms for han-
dling it at very large scale. However, the existing scalable algo-
rithms are not easy to extend to incorporate structural regularization
and prior information – which are critical for real-world applica-
tions where outliers and modeling mismatches are present. In this
work, we propose a new computational framework for large-scale
SUMCOR GCCA. The algorithm can easily incorporate a suite of
structural regularizers which are frequently used in data analytics,
has lightweight updates and low memory complexity, and can be
easily implemented in a parallel fashion. The proposed algorithm is
also guaranteed to converge to a Karush-Kuhn-Tucker (KKT) point
of the regularized SUMCOR problem. Carefully designed simula-
tions are employed to demonstrate the effectiveness of the proposed
algorithm.

Index Terms— Generalized canonical correlation analysis,
SUMCOR, multi-view analysis, regularization, feature extraction

1. INTRODUCTION
Canonical correlation analysis (CCA) is a classic analytical tool [1–
3] which has a wide spectrum of applications in signal process-
ing and machine learning. CCA aims at extracting common low-
dimensional structure of the same set of entities measured in differ-
ent high-dimensional feature spaces (also called ‘views’ or ‘modali-
ties’), e.g., image and speech of a person. In recent years, CCA has
been successfully applied to a variety of domains including brain
imaging [4], blind source separation [5], speech recognition [6], and
word embedding [7, 8].

Despite the nonconvex appearance of the classic two-view CCA
problem, it can be converted to a generalized eigendecomposition
problem and solved rather efficiently [9]. In recent years, there has
been renewed interest in scaling up solvers for two-view CCA. The
proposed scalable algorithms are mostly judicious ways of com-
puting the generalized eigendecomposition problem; see [10–13].
On the other hand, extensions to the so-called generalized canoni-
cal correlation analysis (GCCA) that considers multiple (more than
two) views are highly nontrivial. The arguably most natural exten-
sion of the two-view CCA is the sum-of-correlations (SUMCOR)
GCCA [2,3,14–18]. SUMCOR looks for common structure of mul-
tiple views via enforcing pairwise similarities between the reduced-
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dimension views. Unlike the two-view CCA, SUMCOR has been
shown to be NP-hard [18]. In the literature, many algorithms such
as alternating optimization (AO) [14], modified power method [15],
and semidefinite relaxation [18] have been introduced to handle the
SUMCOR problem. However, most of them have serious complex-
ity issues when the views are large (e.g., when dealing with views
of size 10, 000× 10, 000, the AO algorithm in [14] will create large
whitening matrices occupying 35GB of memory). To address this
issue, Fu et al. [7] proposed a new computational framework and
substantially scaled up SUMCOR, by exploiting data sparsity.

The algorithms proposed in [7] are scalable and effective. There
are, however, important challenges remaining. The algorithms in [7]
are based on a delicate change of variables that hinges on the spe-
cific formulation of the original SUMCOR optimization problem.
However, in practice, modifications to the SUMCOR formulation
are often needed. For example, in many cases one knows that some
features of the views are irrelevant or even damaging to the cor-
relation seeking process (e.g., ‘stop words’ in text analytics, and
non-informative genes in genetics). In such cases, sparsity regu-
larizers have been considered to preclude such irrelevant features
when performing CCA/GCCA [8, 19–21]. Unfortunately, the exist-
ing sparse GCCA algorithms are mostly designed for small/medium-
scale problems and thus are not suitable for big data analytics.

In this work, we propose a new computational framework to
handle the large-scale regularized SUMCOR problem. Our idea is to
employ a penalty-dual decomposition (PDD) technique to ‘split’ the
effort of tackling the already very hard manifold constraints of SUM-
COR and the newly added regularizers. Our approach has an array
of desired features. First, the algorithm admits lightweight updates
leveraging data sparsity. In addition, a variety of regularizers that
are frequently used in data analytics, such as sparsity, group sparsity,
elastic net, smoothness, and nonnegativity can be easily handled by
our new framework. Third, the updates can be naturally distributed
to different computational agents with limited communication over-
head, which can further reduce the overall runtime. Last, the pro-
posed algorithm is guaranteed to converge to a Karush-Kuhn-Tucker
(KKT) point of the problem of interest.

Note that the regularized SUMCOR has nonconvex constraints,
and thus commonly used primal-dual methods in general do not pro-
vide convergence guarantees. Nevertheless, with carefully designed
updating rules that leverage recent theoretical results on generic
PDD algorithms [22], convergence can be shown. Simulations show
that the algorithm is promising for handling big multiview data
and promoting the imposition of structural properties on the sought
canonical components.

2. PROBLEM STATEMENT
Let us consider a two-view data set, where Z1 ∈ RL×M1 and Z2 ∈
RL×M2 are the two views – i.e., Z1(`, :) ∈ R1×M1 and Z2(`, :) ∈
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R1×M2 are two high-dimensional representations of the entity ` in
two different feature spaces (e.g., speech and image of a person).
Let us assume that Xi = (1/

√
L)(Zi − 1dT

i ) is the scaled and
centered version of the ith view, where dT

i = (1/L)
∑L

`=1 Z(`, :)
is the sample mean of the ith view. The classic two-view CCA can
be expressed in the following optimization form [12, 17, 23, 24]:

CCA:

maximize
Q1,Q2

Tr
(
QT

1 X
T
1 X2Q2

)
(1a)

subject to QT
i

(
XT

i Xi

)
Qi = IK , i = 1, 2, (1b)

where IK denotes a K × K identity matrix, Qi ∈ RMi×K de-
notes a dimensionality-reducing matrix of view i, K is the number
of canonical components that we seek and K � min{Mi, L} in
big data analytics. Maximizing Tr(QT

1 X
T
1 X2Q2) subject to the

constraints in (1b) is equivalent to maximizing the cross-correlation
between the reduced-dimension views X1Q1 and X2Q2.

The arguably most natural extension of the two-view CCA is the
sum-of-correlations (SUMCOR) GCCA [2, 3, 14–18].

SUMCOR GCCA:

maximize
{Qi}Ii=1

I∑
i=1

I∑
j>i

Tr
(
QT

i X
T
i XjQj

)
subject toQT

i X
T
i XiQi = IK , i = 1, . . . , I.

(2)

where I > 2 is the number of available views. SUMCOR looks for
common structure among multiple views by enforcing pairwise sim-
ilarities between the reduced-dimension views, i.e., XiQi’s. Unlike
the two-view CCA whose optimal solution amounts to an eigende-
composition, SUMCOR is NP-hard [15, 18]. Nevertheless, effective
and scalable solvers for SUMCOR exist – see the recent work in [7].

In many practical cases, the plain GCCA/CCA in (1) and (2)
are not enough to learn closely related latent representations of the
views. This is because there is always noise and model mismatches
in practice – which could severely hinder the ability of GCCA/CCA
to extract common information from multiple views. To circumvent
this situation, using prior and structural information about the sought
canonical components has been considered to assist GCCA/CCA,
resulting in the regularized GCCA formulation:

Regularized SUMCOR GCCA:

minimize
{Qi}Ii=1

−
I∑

i=1

I∑
j>i

Tr
(
QT

i X
T
i XjQj

)
+

I∑
i=1

λiri(Qi)

subject to QT
i X

T
i XiQi = IK , i = 1, . . . , I, (3)

where λi ≥ 0 is a regularization parameter which strikes a balance
between the SUMCOR objective and structure-promotion. Several
regularization terms are of particular interest. For example,

‖Qi‖1 =

Mi∑
m=1

K∑
k=1

|Qi(m, k)| & ‖Qi‖2,1 =

Mi∑
m=1

‖Qi(m, :)‖2 ,

are often used in the literature as ri(Qi) for feature selection [8,21].
Taking ‖Qi‖2,1 as an example, it is known that the `2,1-norm pro-
motes row-sparsity, and zero rows in Qi will nullify corresponding
columns in Xi when forming XiQi. This is very effective in sup-
pressing irrelevant features and outliers in Xi. There are also other

regularization terms, such as minimum energy and elastic net, which
are frequently used for different purposes – see [8].

Note that the manifold constraints in (3) together with the reg-
ularization term make the optimization problem very challenging.
The algorithm in [14] approximates Problem (3) using a similar for-
mulation while relaxing the constraint to be ‖qi‖2 ≤ 1 for the
K = 1 case, and then finds other components of Qi through a de-
flation procedure. Changing the constraints is apparently undesired,
and deflation is prone to error propagation. In [20], an alternating
direction method of multiplier (ADMM) procedure was proposed to
handle the two-view case with sparsity regularization. The proce-
dure and proof are tailored for the two-view case and cannot cover
the general SUMCOR case. More importantly, the algorithm there
involves forming the term (XT

i Xi)
−1/2, which is a denseMi×Mi

matrix even when Xi is sparse – if Mi = 10, 000, this matrix
costs 35 GB memory when double precision is employed. In addi-
tion, computing the inverse of (XiXi)

1/2 consumesO(1012) flops,
which is also too costly for big data analytics. In [8], a regularized
large-scale algorithm was proposed for the MAX-VAR formulation
of GCCA. However, the algorithm cannot be extended to cover the
SUMCOR case.

3. PROPOSED ALGORITHM
In this section, we address the challenging optimization problem of
large-scale regularized SUMCOR GCCA. Specifically, we will pro-
pose an algorithmic framework that is able to handle huge multiview
data under a variety of structural regularizers on the canonical com-
ponents – with affordable memory and computational costs. The
proposed framework can also easily facilitate parallel computations
with limited communication overhead.

To begin with, let us consider the alternative formulation of
structured GCCA:

minimize
{Qi}Ii=1

I∑
i=1

I∑
j>i

1

2
‖XiQi −XjQj‖2F +

I∑
i=1

λiri(Qi)

subject to QT
i X

T
i XiQi = IK , i = 1, . . . , I.

(4)

Note that if one expands the first term in the objective and discards
the constants, the formulation in (3) is recovered. To proceed, we
re-write the above as

minimize
{Qi,Gi}Ii=1

I∑
i=1

J∑
j>i

1

2
‖XiQi −Gj‖2F +

I∑
i=1

λiri(Qi) (5a)

subject toGi = XiQi, G
T
i Gi = IK , ∀i, (5b)

where the slack variable Gi ∈ RL×K is a thin matrix. This way,
we have not changed the optimization problem, but ‘split the chal-
lenge’ using different variables – since we do not wish to handle the
regularization terms (which are usually nonsmooth) and the mani-
fold constraints together. To deal with Problem (5), we propose to
employ a primal-dual approach. Specifically, we consider the aug-
mented Lagrangian of Problem (5), which is

L
(
{Qi,Gi,Yi}Ii=1

)
=

I∑
i=1

J∑
j>i

1

2
‖XiQi −Gj‖2F +

I∑
i=1

λiri(Qi)

+
ρ

2

I∑
i=1

∥∥∥∥XiQi −Gi +
1

ρ
Yi

∥∥∥∥2
F

,

where Yi is the dual variable associated with the equality constraint
XiQi = Gi. At this point, it is tempting to apply ADMM to handle
the augmented Lagrangian, since one can see that the subproblems
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w.r.t. Qi, Gi and Yi are easy to solve under the ADMM frame-
work [25]. However, ADMM is not guaranteed to converge when
nonconvex constraints are involved. Here, we propose to employ
a delicately modified version of ADMM, namely, the penalty-dual
decomposition (PDD) framework [22]. The proposed algorithm is
presented in Algorithm 1. The PDD algorithm consists of two mod-
ules. The first module is a sub-solver (cf. line 3 in Algorithm 1) that
handles the augmented Lagrangian w.r.t. {Qi} and {Gi} when Yi’s
are fixed. The second module of PDD makes a decision on updat-
ing the dual variables or the penalty parameter ρ(r) (cf. lines 4-8 in
Algorithm 1). In the sub-solver, the parameter ε(r) is for specifying
the accuracy of the sub-solver solution at iteration r. To be specific,
the sub-solver aims at solving the following problem:

minimize
{Qi,Gi:G

T
i Gi=IK}

L
(
{Qi,Gi,Yi}Ii=1

)
(6)

Note that the solver does not need to solve the above to optimality.
Every call of the sub-solver only requires that Qi and Gi converge
to a neighborhood of a KKT point of (6), roughly speaking, where
the ‘diameter’ of the neighborhood is specified by ε(r) – see Eq. (8).

One easily implementable solver for (6) is the so-called inex-
act alternating optimization [26]. Specifically, one may employ the
following updates alternately between {Qi} and {Gi}:

Q+
i ← argmin

Qi

∥∥∥Qi − (Q̂i − α∇f(Q̂i))
∥∥∥2
F
+ λiri(Qi), (7a)

G+
i ← arg min

GT
i Gi=IK

J∑
j=1,j 6=i

1

2

∥∥XjQ
+
j −Gi

∥∥2
F
,

+
ρ(r)

2

∥∥∥∥XiQ
+
i −Gi +

1

ρ(r)
Yi

∥∥∥∥2
F

(7b)

Q̂i ← Q+
i , Ĝi ← G+

i . (7c)

where Q̂i and Q+
i are the old and new iterates of Qi, and∇f(Q̂i) =∑I

j=1,j>i(X
T
i XiQ̂i − XT

i Ĝj) + ρ(r)(XT
i XiQ̂i − XT

i (Ĝi −
1/ρ(r)Yi)) is the partial gradient with respect to Qi of the smooth
part of the objective in (5).

There are many favorable features of the algorithm: First, the
updates of the Qi’s and Gi’s can be very lightweight if the views
are sparse. A complexity order of O(nnz(Xi)K) flops per itera-
tion (nnz(X) = number of non-zeros in X) is enough to compute
the gradient ∇f(Q̂i), since multiplications such as XT

i Gi, XiQi

and XT
i (XiQi) all consume O(nnz(Xi)K) flops. Then, solving

(7a) amounts to a proximal operator, whose complexity is linear in
the size of Qi, if ri(Qi) is some proximity-friendly function such
as `1-norm, `2,1-norm, and elastic net [27]. The subproblem in (7b)
can be solved by economy-size SVD, which only needs O(LK2)
flops to carry out. Second, the update of Yi also costs very few
flops since XiQi has already been computed and only additions of
thin matrices are left. Third, all the subproblems costO(LK) mem-
ory – which is very cheap. Furthermore, the algorithmic structure is
friendly for parallel computing; i.e., Qi and Gi for i = 1, . . . , I
can be updated simultaneously at different computing agents, re-
spectively. What need to be exchanged among the agents are Gi

and Yi, which are merely ‘thin matrices’ of size L×K and thus do
not cost much communication overhead.

At a high level, PDD can be considered as a variant of ADMM,
which also aims at solving the augmented Lagrangian while chang-
ing the weight of the penalty, i.e., ρ, along the iterations. The ρ
parameter and the dual variables both help enforce the lifted equal-
ity constraints, depending on the ‘level of violation’ at a particular

Algorithm 1: PDD-GCCA
input : {Xi}Ii=1; K; ρ(0) > 0; 0 < c < 1; {ε(r), η(r)}∞r=1.

1 r ← 0;
2 repeat
3

(
{Q(r+1)

i ,G
(r+1)
i }Ii=1

)
←

sub-solver
(
{Y (r)

i }i, ρ(r), ε(r)
)

for (6);

4 if
∑I

i=1 ‖XiQ
(r+1)
i −G

(r+1)
i ‖2F ≤ η

(r) then
5 Y

(r+1)
i = Y

(r)
i + ρ(r)(XQ

(r+1)
i −G

(r+1)
i ),

ρ(r+1) = ρ(r);
6 else
7 Y

(r+1)
i = Y

(r)
i , ρ(r+1) = cρ(r);

8 end
9 r ← r + 1;

10 until some stopping criterion is reached;
output: {Gi}

iteration. If the equality constraint is heavily violated, the algorithm
increases ρ so that the next iteration will put more emphasis on the
penalty. This way, and along with a delicately designed updating
order of the primal and dual variables, convergence of the algorithm
can be guaranteed even with nonconvex constraints involved. Re-
garding convergence properties of the PDD based GCCA, we show
that:
Proposition 1 Assume that ε(r) → 0, η(r) → 0 as r →∞ and that
the stopping criterion of the sub-solver involved in Algorithm 1
is

max
(
‖Q̂i −Q+

i ‖∞, ‖Ĝi −G+
i ‖∞

)
≤ ε(r), ∀r. (8)

Then, every limit point of the solution sequence produced by the pro-
posed PDD-GCCA algorithm is a KKT point of Problem (4).

Due to the space limitation, we only present the main ideas be-
hind the proof here, and relegate the complete proof to the forthcom-
ing journal version.

Proof Sketch: The proof consists of three parts. First, we show
that the sub-solver produces KKT points of the subproblem (6). This
part can be shown by applying a similar technique as in [8, 28–30].
Then, we show that the KKT points of Problem (3) satisfy the so-
called Robinson condition [22, 31]. The final step is to apply the
result for generic penalty-dual decomposition [22] to show that the
proposed algorithm converges to a KKT point. We should mention
that the first difficulty of the proof lies in convergence of the sub-
solver, since it was not obvious whether or not the updates in (7a)-
(7b) reach a KKT point of Probem (6) – the problem has noncon-
vex constraints and applying inexact alternating optimization is not
guaranteed to converge by simply invoking existing analyses such as
those in [26]; tailored analysis is needed for this step. Another key
challenge is to verify the Robinson’s condition, which is not eas-
ily doable in general cases. Fortunately, the regularized SUMCOR
problem can be verified to satisfy this condition.

Another comment is that, in theory, the sub-solver is required to
satisfy increasingly stringent stopping criteria as specified in Propo-
sition 1 to guarantee convergence. In practice, we observe that this
is not necessary. Using a fixed number of iterations to implement the
sub-solver usually suffices to offer quick convergence – and this is
consistent with the observation in [22], where the PDD framework
was applied to a number of different problems.

4. SIMULATIONS
In this section we showcase the effectiveness of PDD-GCCA using
large-scale simulations. The multiple views are generated as follows.
We assume that the views share a common latent factor S ∈ RL×Mi
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which is a randomly generated sparse matrix whose non-zero entries
follow the zero-mean unit-variance Gaussian distribution. Each view
Xi is generated following Xi = SAi, where Ai ∈ RMi×Mi is a
matrix that maps the shared factor to the ith view. The density level
of S and Ai is controlled such that the density level of each view,
i.e., densityi =

nnz(Xi)
LMi

, is controlled. The number of features of
each view is set to be equal for simplicity, i.e. Mi =M .

We first test the algorithms when the views do not have outly-
ing features. Under such cases, we let ri(Qi) = 0 and (4) recovers
the classic SUMCOR GCCA formulation. For such cases, we adopt
the recently proposed large-scale SUMCOR algorithms LasCCA and
DisCCA [7] as baselines; LasCCA and DisCCA were shown to be
state-of-the-art when handling very large-scale and sparse mutiview
data [7]. To evaluate the performance, we observe the total corre-
lation captured. Since the views share a common latent factor, they
are perfectly correlated in the shared latent domain. Therefore, the
optimal value of total correlation is achieved when AiQi’s are per-
fectly aligned with each other – which yield a SUMCOR value of
KI(I−1). We also record the time each algorithm needs to capture
95% of the optimal correlation, denoted as 95%-time. The num-
ber of observations is L = 120, 000 and each view is defined by an
M = 100, 000 features. The number of canonical components is
set to K = 5. The parameter ρ(0) for PDD-GCCA is set to be 2.
The maximal number of iterations of the sub-solver is set to be 5.
The sequence for the primal residual is chosen to be η(r) = 100

r
and

c = 0.9. The results are averaged over 20 Monte Carlo trials.
Table 1 shows the performance of the algorithms under various

density levels. One can see that LasCCA works very well in terms of
capturing correlations. Under all the tested density levels, LasCCA
captures more than 98% of the total SUMCOR (which is 100 in this
simulation). DisCCA also works well when density = 5× 10−5

and 10−4, but less competitive when density = 10−5. PDD-
GCCA has comparable performance relative to LasCCA in terms of
capturing correlations, but PDD-GCCA works much faster – when
using a single core implementation, it is already at least 3 times
faster than the benchmarking algorithms. This may be because PDD-
GCCA uses a primal-dual framework, and dual updates usually help
expedite convergence – while both LasCCA and DisCCA are primal
algorithms which do not employ any dual updates. In addition, if
one employs a multicore implementation of PDD-GCCA (recall that
PDD-GCCA can be implemented distributively using I cores), the
runtime performance of PDD-GCCA is even better – as a result, the
multicore version is at around 10 times faster than the baselines for
capturing 95% of the total correlations.

Table 1: Evaluation of the algorithms; PDD-GCCA uses ri(·) = 0;
L = 120, 000 and M = 100, 000.

metric density level
Algorithm 10−4 5× 10−5 10−5

PDD-GCCA (multicore) corr. captured 99.66 99.59 99.79
95% time (sec) 6.82 6.08 7.43

PDD-GCCA corr. captured 99.67 99.59 99.79
95% time (sec) 22.06 14.64 18.57

LasCCA corr. captured 98.96 98.77 99.37
95% time (sec) 59.56 63.23 87.5

DisCCA (multicore) corr. captured 96.78 95.61 78.62
95% time (sec) 54.24 71.37 inf

DisCCA corr. captured 96.78 95.61 78.62
95% time (sec) 133.20 144.97 inf

We also test the algorithms when outlying features are present
in the views. To simulate such scenarios the data are generated as
follows: Xi = [SAi,Oi] + N , where S and Ai are defined as
before, N is zero mean 0.01 variance sparse Gaussian noise and
Oi ∈ RL×Mo is also a sparse matrix with zero-mean and unit vari-
ance non zero entries – but completely uncorrelated across the views.

The ‘signal part’ and the ‘outlier’ part of each view are enforced to
have comparable energy levels, i.e. ‖SAi‖F u ‖Oi‖F , so that sim-
ple energy detection could not identify the outlying features. In this
case, GCCA has two objectives. The first is to capture the highest
possible correlation between the informative part of the views, while
at the same time to suppress the impact of Oi. Towards this end, the
`2,1 and `1 norms that promote (row-)sparsity are employed to serve
as ri(Qi). In order to evaluate the performance of the algorithms,
two metrics are introduced as in [8]. Let Is and Io be the index
sets of the signal and the outlying columns in Xi, respectively,
where Io

⋃
Is = {1, . . . , L}. The first metric is: metric 1=∑I

i=1

∑I
j>i Tr

(
Qi(Is, :)TXi(:, Is)TXj(:, Is)Qj(Is, :)

)
100

KI(I−1)
,

which measures the percentage of total signal correlation captured.
In our simulations, metric 1 ∈ [0, 100], and a higher value of
metric 1 is desired. The second metric measures the ability of
identifying and suppressing the outlying part. To this end, we define
metric 2=

∑I
i=1‖Qi(Io, :)‖F whose optimal value is zero and

smaller values of metric 2 correspond to better performance in
suppressing outliers.

Table 2 shows the performance of the algorithms. The number
of observations is L = 100, 000 that contain 80, 000 informative
and 80, 000 outlying features. The number of canonical components
varies from K = 5 to K = 50. The density level of each view is
density = 10−4. The regularization parameter λi is chosen to
be 0.1. The results are averaged over 20 Monte Carlo simulations
as before. One can see that PDD-GCCA with the `2,1 norm regular-
ization remarkably outperforms the unregularized ones: it captures
more than 92% of the total signal correlation in all cases and it suc-
cessfully suppresses the outlying features according to the values of
metric 2. PDD-GCCA with `1 regularizers also works well. This
simulation also justifies our motivation of considering regularized
GCCA: When outlying features are present, classic GCCA may not
be able to produce satisfactory results.

Table 2: Performance of the algorithms in the presence of outliers.

metric # of canonical components
Algorithm K = 5 K = 10 K = 20 K = 50

PDD-GCCA metric 1 27.78 28.44 29.21 29.24
metric 2 2.99 4.18 5.81 9.13

PDD-GCCA (`1) metric 1 91.14 92.57 91.74 92.13
metric 2 0.55 0.88 1.35 2.30

PDD-GCCA (`2,1) metric 1 92.26 92.43 94.72 95.83
metric 2 0.63 1.03 1.21 1.86

LasCCA metric 1 37.61 40.88 39.59 38.37
metric 2 2.51 3.41 4.84 7.66

DisCCA metric 1 18.28 18.44 17.61 17.27
metric 2 3.49 4.93 7.11 11.16

5. CONCLUSION
In this work, the regularized SUMCOR GCCA problem has been
considered. A scalable algorithm that is based on penalty-dual de-
composition has been proposed to address this challenging optimiza-
tion problem. The proposed PDD-GCCA algorithm can easily in-
corporate many different regularizers to enforce structural canonical
components, and thus is very flexible. It also admits lightweight up-
dates and low memory complexity when handling large sparse data.
The proposed algorithmic framework is friendly to parallel comput-
ing – the variable splitting and dual decomposition nature of the al-
gorithmic structure can easily facilitate distributed implementation
with limited communication overhead. Despite the hardness of an-
alyzing convergence properties of primal-dual optimization involv-
ing nonconvex constraints, the algorithm features KKT convergence
assurance. Simulations on synthetic large-scale data have been em-
ployed to demonstrate the effectiveness of the proposed algorithm.
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