
DISTRIBUTED SOLUTION OF LARGE-SCALE LINEAR SYSTEMS
VIA ACCELERATED PROJECTION-BASED CONSENSUS

Navid Azizan-Ruhi?, Farshad Lahouti?, Salman Avestimehr†, Babak Hassibi?

? California Institute of Technology, Pasadena, CA 91125
† University of Southern California, Los Angeles, CA 90007

ABSTRACT

Solving a large-scale system of linear equations is a key step
at the heart of many algorithms in scientific computing, ma-
chine learning, and beyond. When the problem dimension is
large, computational and/or memory constraints make it de-
sirable, or even necessary, to perform the task in a distributed
fashion. In this paper, we consider a common scenario in
which a taskmaster intends to solve a large-scale system
of linear equations by distributing subsets of the equations
among a number of computing machines/cores. We propose
a new algorithm called Accelerated Projection-based Con-
sensus (APC) for this problem. The convergence behavior
of the proposed algorithm is analyzed in detail and analyti-
cally shown to compare favorably with the convergence rate
of alternative distributed methods, namely distributed gra-
dient descent, distributed versions of Nesterov’s accelerated
gradient descent and heavy-ball method, the block Cimmino
method, and ADMM. On randomly chosen linear systems,
as well as on real-world data sets, the proposed method of-
fers significant speed-up relative to all the aforementioned
methods.

Index Terms— System of linear equations, distributed
computing, big data, consensus, optimization

1. INTRODUCTION

With the advent of big data, many analytical tasks of inter-
est rely on distributed computations over multiple processing
cores or machines. This is either due to the inherent complex-
ity of the problem, in terms of computation and/or memory,
or due to the nature of the data sets themselves that may al-
ready be dispersed across machines. Most algorithms in the
literature have been designed to run in a sequential fashion, as
a result of which in many cases their distributed counterparts
have yet to be devised. In order to devise efficient distributed
algorithms, one has to address a number of key questions such
as (a) What computation should each worker carry out, (b)
What is the communication architecture and what messages
should be communicated between the processors, (c) How
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does the distributed implementation fare in terms of compu-
tational complexity, and (d) What is the rate of convergence
in the case of iterative algorithms.

In this paper, we focus on solving a large-scale system of
linear equations in a distributed fashion, which is one of the
most fundamental problems in numerical computation, and
lies at the heart of many algorithms in engineering and the
sciences. In particular, we consider the setting in which a
taskmaster intends to solve a large-scale system of equations
with the help of a set of computing machines/cores (Figure 1).

This problem can in general be cast as an optimization
problem, with a cost function that is separable in the data1

(but not in the variables). Hence, there are general approaches
to construct distributed algorithms for this problem, such as
distributed versions of gradient descent [1, 2, 3] and its vari-
ants (e.g. Nesterov’s accelerated gradient [4] and heavy-ball
method [5]), as well as the so-called Alternating Direction
Method of Multipliers (ADMM) [6] and its variants. ADMM
has been widely used [7, 8, 9] for solving various convex op-
timization problems in a distributed way, and in particular for
consensus optimization [10, 11, 12], which is the relevant one
for the type of separation that we have here. In addition to
the optimization-based methods, there are a few distributed
algorithms designed specifically for solving systems of linear
equations. The most famous one of these is what is known as
the block Cimmino method [13, 14, 15], which is a block row-
projection method [16], and is in a way a distributed imple-
mentation of the Kaczmarz method [17]. Another algorithm
has been recently proposed in [18, 19], where a consensus-
based scheme is used to solve a system of linear equations
over a network of autonomous agents.

Our main contribution is the design and analysis of a new
algorithm for distributed solution of large-scale systems of
linear equations, which is significantly faster than all the ex-
isting methods. In our methodology, the taskmaster assigns a
subset of equations to each of the machines and invokes a dis-
tributed consensus-based algorithm to obtain the solution to
the original problem in an iterative manner. At each iteration,
each machine updates its solution by adding a scaled version

1Solving a system of linear equations, Ax = b, can be set up as the
optimization problem minx ‖Ax− b‖2 = minx

∑
i ‖(Ax)i − bi‖2.
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of the projection of an error signal onto the nullspace of its
system of equations, and the taskmaster conducts an averag-
ing over the solutions with momentum. The incorporation
of a momentum term in both projection and averaging steps
results in accelerated convergence of our method, compared
to the other projection-based methods. For this reason, we re-
fer to this method as Accelerated Projection-based Consensus
(APC). We provide a complete analysis of the convergence
rate of APC, as well as a detailed comparison with all the
other distributed methods mentioned above. Also by empiri-
cal evaluations over both randomly chosen linear systems and
real-world data sets, we demonstrate the significant speed-ups
from the proposed algorithm, relative to the other distributed
methods. Finally, as a further implication of our results, we
propose a novel distributed preconditioning method, which
can be used to improve the convergence rate of distributed
gradient-based methods.

2. THE SETUP

We consider the problem of solving a large-scale system of
linear equations

Ax = b, (1)

where A ∈ RN×n, x ∈ Rn and b ∈ RN . While we will
generally take N ≥ n, we will assume that the system has a
unique solution. For this reason, we will most often consider
the square case (N = n).

As mentioned before, for large-scale problems (when
N,n � 1), it is highly desirable, or even necessary, to solve
the problem in a distributed fashion. Assuming we have m
machines (as in Figure 1), the equations can be partitioned
so that each machine gets a disjoint subset of them. In other
words, we can write (1) as


A1

A2

...
Am

x =


b1
b2
...
bm

 ,

where each machine i receives [Ai, bi]. In some applications,
the data may already be stored on different machines in such
a fashion. For the sake of simplicity, we assume that m di-
vides N , and that the equations are distributed evenly among
the machines, so that each machine gets p = N

m equations.
Therefore Ai ∈ Rp×n and bi ∈ Rp for every i = 1, . . .m. It
is helpful to think of p as being relatively small compared to
n. In fact, each machine has a system of equations which is
highly under-determined.

Fig. 1. Schematic representation of the taskmaster and the m
machines. Each machine i has only a subset of the equations,
i.e. [Ai, bi].

3. ACCELERATED PROJECTION-BASED
CONSENSUS

3.1. The Algorithm

Each machine i can certainly find a solution (among infinitely
many) to its own highly under-determined system of equa-
tions Aix = bi, with simply O(p3) computations. We denote
this initial solution by xi(0). Clearly adding any vector in the
right nullspace of Ai to xi(0) will yield another viable solu-
tion. The challenge is to find vectors in the nullspaces of each
of the Ai’s in such a way that all the solutions for different
machines coincide.

At each iteration t, the master provides the machines with
an estimate of the solution, denoted by x̄(t). Each machine
then updates its value xi(t) by projecting its difference from
the estimate onto the nullspace, and taking a weighted step in
that direction (which behaves as a “momentum”). Mathemat-
ically

xi(t+ 1) = xi(t) + γPi(x̄(t)− xi(t)),
where Pi = I − ATi (AiA

T
i )−1Ai is the projection matrix

onto the nullspace of Ai (It is easy to check that AiPi = 0
and P 2

i = Pi).
Although this might bear some resemblance to the block

Cimmino method because of the projection matrices, APC
has a much faster convergence rate than the block Cimmino
method (i.e. convergence time smaller by a square root), as
will be shown. Moreover, it turns out that the block Cimmino
method is in fact a special case of APC for γ = 1.

The update rule of xi(t + 1) described above can be also
thought of as the solution to an optimization problem with
two terms: the distance from the global estimate x̄(t), and the
distance from the previous solution xi(t). In other words, one
can show that

xi(t+ 1) = argmin
xi

‖xi − x̄(t)‖2 +
1− γ
γ
‖xi − xi(t)‖2

s.t. Aixi = bi

The second term in the objective is what distinguishes this
method from the block Cimmino method. If one sets γ equal
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Algorithm 1 APC: Accelerated Projection-Based Consensus
(For solving Ax = b distributedly)

Input: data [Ai, bi] on each machine i = 1, . . .m, param-
eters η, γ
Initialization: On each machine i, find a solution xi(0)
(among infinitely many) to Aix = bi.
for t = 1 to T do

for each machine i parallel do
xi(t+ 1)← xi(t) + γPi(x̄(t)− xi(t))

end for
at the master: x̄(t+1)← η

m

∑m
i=1 xi(t+1)+(1−η)x̄(t)

end for

to 1 (as it is in the block Cimmino method), the second term
disappears altogether, and the update no longer depends on
xi(t). As we will show, this can have a dramatic impact on
the convergence rate.

After each iteration, the master collects the updated val-
ues xi(t + 1) to form a new estimate x̄(t + 1). A plausi-
ble choice for this is to simply take the average of the val-
ues as the new estimate, i.e., x̄(t + 1) = 1

m

∑m
i=1 xi(t + 1).

This update works, and is what appears both in ADMM and
in the consensus method of [18, 19]. But it turns out that
it is extremely slow. Instead, we take an affine combina-
tion of the average and the previous estimate as x̄(t + 1) =
η
m

∑m
i=1 xi(t+1)+(1−η)x̄(t), which introduces a one-step

memory, and again behaves as a momentum.
The resulting update rule is therefore

xi(t+ 1) = xi(t) + γPi(x̄(t)− xi(t)), i ∈ [m], (2a)

x̄(t+ 1) =
η

m

m∑
i=1

xi(t+ 1) + (1− η)x̄(t), (2b)

which leads to Algorithm 1.

3.2. Convergence Analysis

We analyze the convergence of the proposed algorithm and
prove that it has linear convergence, with no additional as-
sumption imposed. We also derive the rate of convergence
explicitly.

Let us define the matrix X ∈ Rn×n as

X ,
1

m

m∑
i=1

ATi (AiA
T
i )−1Ai. (3)

As it will become clear soon, the condition number of this
matrix predicts the behavior of the algorithm. Note that since
the eigenvalues of the projection matrix Pi are all 0 and 1,
for every i, the eigenvalues of X are all between 0 and 1.
Denoting the eigenvalues of X by µi, 0 ≤ µmin , µn ≤
· · · ≤ µ1 , µmax ≤ 1. Let us define complex quadratic

polynomials pi(λ) characterized by γ and η as

pi(λ; γ, η) , λ2+

(−ηγ(1− µi) + γ − 1 + η − 1)λ+ (γ − 1)(η − 1) (4)

for i = 1, . . . , n. Further, define set S as the collection of
pairs γ ∈ [0, 2] and η ∈ R for which the largest magnitude
solution of pi(λ) = 0 among every i is less than 1, i.e.

S = {(γ, η) ∈ [0, 2]× R |
roots of pi have magnitude less than 1 for all i}. (5)

The following result summarizes the convergence behavior of
the proposed algorithm.

Theorem 1 Algorithm 1 converges to the true solution as fast
as ρt converges to 0, as t → ∞, for some ρ ∈ (0, 1), if and
only (γ, η) ∈ S. Furthermore, the optimal rate of conver-
gence is

ρ =

√
κ(X)− 1√
κ(X) + 1

≈ 1− 2√
κ(X)

, (6)

where κ(X) = µmax

µmin
is the condition number of X , and the

optimal parameters (γ∗, η∗) are the solution to the following
equations{

µmaxηγ = (1 +
√

(γ − 1)(η − 1))2,

µminηγ = (1−
√

(γ − 1)(η − 1))2.

For proof see the supplementary material in the online version
[20].

3.3. Computational Complexity and Numerical Stability

In addition to the convergence rate, or equivalently the num-
ber of iterations until convergence, one needs to consider the
computational complexity per iteration.

At each iteration, since Pi = In − ATi (AiA
T
i )−1Ai, and

Ai is p×n, each machine has to do the following two matrix-
vector multiplications: (1) Ai(xi(t) − x̄(t)), which takes
pn scalar multiplications, and (2)

(
ATi (AiA

T
i )−1

)
times the

vector from the previous step (e.g. using QR factorization),
which takes another np operations. Thus the overall compu-
tational complexity of each iteration is 2pn.

Finally, we should mention that the computation done at
each machine during each iteration is essentially a projection,
which has condition number one and is as numerically stable
as a matrix vector multiplication can be.

4. COMPARISON WITH RELATED METHODS

As mentioned earlier, (1) can also be viewed as an optimiza-
tion problem of the form min

x
‖Ax−b‖2, and since the objec-

tive is separable in the data, i.e. ‖Ax− b‖2 =
∑m
i=1 ‖Aix−
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Table 1. A summary of the convergence rates of different methods. The smaller the convergence rate is, the faster is the method.
The condition number of X is typically much smaller than that of ATA.

DGD D-NAG D-HBM Naive Consensus B-Cimmino APC (proposed)

1− 2
κ(ATA)

1− 2√
3κ(ATA)+1

1− 2√
κ(ATA)

1− µmin(X) 1− 2
κ(X) 1− 2√

κ(X)

bi‖2, generic distributed optimization methods such as dis-
tributed gradient descent (DGD), distributed Nesterov’s ac-
celerated gradient descent (D-NAG), distributed heavy-ball
method (D-HBM), Alternating Direction Method of Multi-
pliers (ADMM) apply well to the problem. For a detailed
analysis of these methods, see the extended version [20].

The block Cimmino method [13, 14, 15] and the consen-
sus method of [18, 19] are perhaps the closest algorithms in
spirit to APC. However, the convergence rate of the Cimmino
method is much slower in comparison with APC (its conver-
gence time is the square of that of APC), and in fact APC
method includes the block Cimmino method as a special case
for γ = 1. The analysis and proofs can be found in [20]. Al-
though the consensus method of [18, 19] has the advantage
that it works for an arbitrary networked architecture, it is ex-
tremely slow (convergence rate = 1− µmin(X)).

Table 1 shows a summary of the optimal convergence
rates of different methods. All the methods have the same per
iteration complexity.

5. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed method by
comparing it with the other distributed methods discussed
throughout the paper. We use randomly-generated problems
as well as real-world ones form the National Institute of
Standards and Technology repository, Matrix Market [21].

Fig. 2. The decay of the error for different distributed algo-
rithms, on a real problem (ORSIRR 1: Oil reservoir simula-
tion) from Matrix Market [21]. For fairness, the parameters
in all the methods have been tuned to their optimal values.

Fig. 2 shows the relative error (the distance from the true
solution, divided by the true solution, in `2 norm) for all the
discussed methods, on an example (ORSIRR 1: Oil Reservoir
Simulation) from the repository. To make the comparison be-
tween different methods fair, we have tuned the parameters in
all of the methods to their optimal values. Also, as mentioned
before, all the algorithms have the same per-iteration com-
plexity. As one can see, APC outperforms the other methods
significantly. For more extensive numerical results see [20].

6. A DISTRIBUTED PRECONDITIONING TO
IMPROVE GRADIENT-BASED METHODS

The noticeable similarity between the optimal convergence

rate of APC (
√
κ(X)−1√
κ(X)+1

) and that of D-HBM (
√
κ(ATA)−1√
κ(ATA)+1

)

suggests that there might be a connection between the two.
It turns out that there is, and we propose a distributed pre-
conditioning for D-HBM, which makes it achieve the same
convergence rate as APC. The algorithm works as follows.

Prior to starting the iterative process, each machine i
can premultiply its own set of equations Aix = bi by
(AiA

T
i )−1/2, which can be done in parallel (locally) with

O(p2n) operations. This transforms the global system of
equations Ax = b to a new one Cx = d, where

C =

 (A1A
T
1 )−1/2A1

...
(AmA

T
m)−1/2Am

 , and d =

 (A1A
T
1 )−1/2b1

...
(AmA

T
m)−1/2bm

 .
The new system can then be solved using distributed

heavy-ball method, which will achieve the same rate of con-
vergence as APC, i.e.

√
κ−1√
κ+1

where κ = κ(CTC) = κ(X).

7. CONCLUSION

We considered the problem of solving a large-scale system of
linear equations by a taskmaster with the help of a number of
computing machines/cores, in a distributed way. We proposed
an accelerated projection-based consensus algorithm for this
problem, and fully analyzed its convergence rate. Analyti-
cal and experimental comparisons with the other known dis-
tributed methods confirm significantly faster convergence of
the proposed scheme. Finally, our analysis suggested a novel
distributed preconditioning for improving the convergence of
the distributed heavy-ball method to achieve the same theoret-
ical performance as the proposed consensus-based method.
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