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ABSTRACT
This work develops an effective distributed algorithm for the
solution of stochastic optimization problems that involve partial
coupling among both local constraints and local cost functions.
While the collection of networked agents is interested in discovering
a global model, the individual agents are sensing data that is
only dependent on parts of the model. Moreover, different agents
may be dependent on different subsets of the model. In this way,
cooperation is justified and also necessary to enable recovery
of the global information. In view of the local constraints, we
show how to relax the optimization problem to a penalized form,
and how to enable cooperation among neighboring agents. We
establish mean-square-error convergence of the resulting strategy
for sufficiently small step-sizes and large penalty factors. We also
illustrate performance by means of simulations.

Index Terms— Distributed learning, diffusion strategy,
stochastic optimization, coupled optimization, multi-agent net-
works.

I. INTRODUCTION AND RELATED WORK

Consider a multi-agent optimization problem consisting of N
networked agents, where each agent is associated with an individual
cost function, Jk(w). There have been extensive works in the
literature (e.g., [1]–[12] and the references therein) where effective
algorithms have been developed for the distributed solution of
constrained optimization problems of the form:

min
w

N∑
k=1

Jk(w), s.t. w ∈W1 ∩ · · · ∩WN (1)

where Wk denotes a convex constraint set at node k. In this
formulation, each cost Jk(w) is a function of the same parameter
vector, w ∈ RM . However, in many applications such as in
multitask learning [13]–[15], distributed wireless localization [16],
minimum-cost flow problems [17], and distributed power systems
monitoring [18], the individual costs Jk(·) may be functions of only
a few entries of w; moreover, different agents may be functions of
different subsets of these parameters. Motivated by these scenarios,
we consider in this work a more general problem where we assume
that there are L variables, denoted by {w1, w2, . . . , wL} with
each w` ∈ RM` . We also assume that the cost of each agent
is a function of only a subset of these variables. Without loss
of generality, we assume the {w`} are distinct and do not share
entries. In reference [19], we examined a special case of this
situation without constraints and under the assumption that the exact
gradient vectors of the costs Jk(.) are available to the designer.
Under these conditions, it was possible to rely on exact diffusion
techniques [20] to solve the optimization problem exactly. In this
work, we generalize the results in several respects: (a) we add local
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constraints represented by the sets {Wk}, which are only available
locally; (b) we do not assume knowledge of exact gradients and
replace them by stochastic approximations from streaming data; and
(c) we reformulate the optimization problem by employing penalty-
methods to arrive at a fully-distributed solution for coupled costs.

Thus, let Ik denote the set of variable indices that affect the cost
of agent k and let wk denote the collection of variables that affect
this agent:

wk , col{w`}`∈Ik ∈ RQk , Qk ,
∑
`∈Ik

M`. (2)

If we stack all variables into a larger L × 1 block vector w ,
col{w1, w2, ..., wL} ∈ RM , then we are reduced to determining
the solution of the optimization problem:

min
w

Jglob(w)
∆
=

N∑
k=1

Jk(wk), s.t. w ∈W1 ∩ · · · ∩WN (3)

Since different agents may be influenced by common vectors {w`},
cooperation becomes desirable and is often necessary to improve
accuracy and to ensure that agents reach agreement about the
unknown shared parameters. Figure 1 illustrates the formulation
for a simple network.

Fig. 1: A connected network of agents where the local costs
depend on different subsets of the global parameter vector. For this
example, we have w = [w1, w2, w3, w4, w5, w6].

The constraint sets Wk are generally described by equality and
inequality conditions of the form:

Wk =

{
w :

hk,u(wk) = 0, u = 1, ....., Uk
gk,v(wk) ≤ 0, v = 1, ....., Vk

(4)

where {hk,u(·), gk,v(·)} are convex functions. Problem (3) is
assumed to be feasible and therefore, a minimizer exists

wo = col{w1,o, · · · , wL,o} ∆
= arg min

w∈W1∩···∩WN

Jglob(w) (5)

It is clear that algorithms that solve (1) can be used to solve
(3). For example, this can be achieved by extending each local
variable wk into the longer global variable w. However, this solution
method would require unnecessary communications and memory
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allocation, and has been observed in simulations (see [19], [21])
to lead to performance degradation. It is therefore necessary to
solve problem (3) more directly and also more effectively. As
noted in [19], problems of the type (3), with partial coupling
among the local costs, have been less studied in the literature
than problems similar to (1). Some useful special cases, including
variations without constraints or variations that assume access to
exact gradient calculations, appear in [18], [21]–[23] using ADMM
methods or similar primal-dual methods. In [24] a special case of
(3) is solved under a stochastic environment where each agent cost
is a quadratic function of wk and coupling occurs with neighboring
nodes through linear constraints. The works [4] and [5] consider
stochastic settings for problem (1), and thus, cannot solve (3)
directly.

In this work, we will solve problem (3) directly under a stochas-
tic environment where agents do not necessarily know the exact
gradient information but are subject to noisy perturbations as is
the case in learning with streaming data. We will employ constant
step-size learning in order to endow the resulting recursions with
adaptation abilities to drifts in the models. It was shown in [25],
[26] that under such scenarios, diffusion strategies [1] have superior
performance than consensus strategies and primal-dual methods.
Additionally, it is explained in [20] that diffusion strategies can be
motivated by optimizing penalized costs. For these reasons, we shall
employ in this work penalized diffusion methods to solve problem
(3).

Notation. We use boldface letters to denote random quantities
and regular font to denote their realizations or deterministic vari-
ables. For any set X = {n1, n2, · · · , nx}, where ns is an integer.
We let y = col{bi}i∈X denote a column vector with r-th entry
y(r) = bnr and U = [cij ]i,j∈X denote a matrix with (r, q) entry
U(r, q) = cnrnq .

II. PENALIZED FORMULATION
We start our derivation by adapting the technique from [2] to

fit problem (3). We first relax problem (3) and replace it by the
following penalized form parametrized by a scalar η ≥ 0 (η = 0
for the unconstrained case):

minimize
w

Jglob
η (w) ,

N∑
k=1

Jk,η(wk) (6)

where the individual costs on the right-hand side incorporate a
penalty term, and are defined as follows:

Jk,η(wk) , Jk(wk) + η pk(wk) (7)
with each penalty function in (7) given by

pk(wk) ,
Uk∑
u=1

δEP(hk,u(wk)
)

+

Vk∑
v=1

δIP(gk,v(wk)
)

(8)

Here, the terms δEP(x) and δIP(x) denote differentiable convex
functions that penalize the violation of the constraints, namely, they
satisfy the requirements:

δEP(x) =

{
0, x = 0
> 0, x 6= 0

, δIP(x) =

{
0, x ≤ 0

> 0, otherwise (9)

Reference [2] provides useful examples of such functions. We
denote the optimal solution of (6) by:

w? = col{w1,?, · · · , wL,?} ∆
= arg min

w1,··· ,wL

Jglob
η (w) (10)

II-A. Reformulation for Distributed Implementation

In order to solve (6) in a distributed manner, we first need to adjust
the notation to account for one additional degree of freedom. Since
the costs of two arbitrary agents k and s, may depend on the same

sub-vector, w`, and these two agents will be learning w` over time,
each one of them will have its own local estimate for w`. Thus,
we refer to w` at agent k by w`k and to the same w` at agent s by
w`s. With this in mind, we redefine wk; defined earlier in (2) using
the local copies instead, namely, we now write

wk
∆
= col{w`k}`∈Ik ∈ RQk (11)

We further let C` denote the cluster of nodes that contains the
variable w` in their costs:

C` = {k | ` ∈ Ik} (12)
To require all local copies {w`k}k∈C` to coincide with each other,
we introduce the constraint

w`k = w`s, ∀ k, s ∈ C` (13)
Using relations (11) and (13), we can rewrite problem (6) as

minimize
w1,....,wN

Jglob
η (w1, ...., wN ) ,

N∑
k=1

Jk,η(wk) (14)

subject to w`k = w`s, ∀ k, s ∈ C`, ∀ `

III. COUPLED DIFFUSION STRATEGY
To solve (14), we associate with each cluster C` a set of

coefficients {a`,sk}s,k∈C` that are chosen to satisfy:∑
s∈C`

a`,sk = 1,
∑
k∈C`

a`,sk = 1 (15)

a`,sk ≥ 0, and a`,sk = 0 if s /∈ Nk (16)
Let N` denote the cardinality of cluster C` and introduce the N`×
N` matrices:

A`
∆
= [a`,sk]s,k∈C` (17)

Assumption 1. (Each cluster is strongly-connected): The combi-
nations matrices {A`} are assumed to be primitive, i.e., we assume
that there exists a large enough j0 such that the elements of Aj0`
have strictly positive entries. This implies that for any two arbitrary
agents in cluster C`, there exists at least one path with nonzero
weights {a`,sk}s,k∈C` linking one agent to the other. Moreover, at
least one self weight {a`,kk}k∈C` is nonzero. We further assume
the matrices {A`} to be symmetric and doubly stochastic. �

Assumption 1 is satisfied for most networks of interest. For exam-
ple, applications in distributed power system monitering, distributed
control, and maximum-flow problems satisfy this assumption —
see [18], [21], [24]. Additionally, multitask applications satisfy this
assumption [13]–[15]. In fact, this work is not limited to these
scenarios, and can handle more general situations. Moreover, since
most networks of interest are connected, then if some cluster C`
happens to be unconnected, we can embed it into a larger connected
cluster C′` such that C` ⊂ C′` – see [19].

We state the following auxiliary result proven in [20].

Lemma 1. For any Q × Q primitive, symmetric and doubly
stochastic matrix A, it holds that IQ−AT is symmetric and positive
semi-definite. Moreover, if we introduce the eigen-decomposition
1
2
(IQ − AT) = UΣUT, the symmetric square-root matrix: V ,

UΣ1/2UT ∈ RQ×Q and let:
A = A⊗ IM , V = V ⊗ IM (18)

Then, for any block vector X = col{x1, ..., xQ} in the nullspace of
I −AT with entries xk ∈ RM it holds that:
VX = 0 ⇐⇒ (I −AT)X = 0 ⇐⇒ x1 = x2 = ... = xQ (19)

�
III-A. Coupled Diffusion Development
Lemma 1 allows us to rewrite (14) in an equivalent form that is
amenable to distributed implementations. First, we introduce

W
` , col{w`k}k∈C` ∈ RN`M` (20)
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as the collection of all local copies of w` across the agents in cluster
C`. Next we use Lemma 1 to rewrite the constraints of problem (14)
in an equivalent manner. Recall that each cluster C` is associated
with a symmetric doubly stochastic combination matrix A`. We
appeal to Lemma 1 to decompose 1

2
(IN` −A

T
` ) = U`Σ`U

T
` . If we

let
V` , U`Σ

1/2
` UT

` , V` , V` ⊗ IM` , (21)
then using Lemma 1 and the definition of W` in (20) we get

w`k = w`s, ∀ k, s ∈ C` ⇐⇒ V`W` = 0, ∀ `. (22)
Using relation (22), we can rewrite problem (14) equivalently as

minimize
W1,....,WL

J (W1,W2, · · · ,W`)︸ ︷︷ ︸
∆
=

∑N
k=1

Jk(wk)

+ ηP(W1,W2, · · · ,W`)︸ ︷︷ ︸
∆
=

∑N
k=1

pk(wk)

(23)

subject to V`W` = 0, ∀ `
To rewrite problem (23) more compactly, we introduce

V , diag{V`}L`=1, W
∆
= col{W`}L`=1 ∈ RS , (24)

J (W)
∆
= J (W1, · · · ,WL), P(W)

∆
= P(W1, · · · ,WL) (25)

where S ,
L∑̀
=1

N`M`. Then, problem (23) becomes:

minimize
W

J (W) + ηP(W), s.t. VW = 0 (26)

Instead of solving the constrained problem (26), we further relax it
and solve the penalized version:

minimize
W

J (W) + ηP(W) +
1

µ
‖VW‖2, (27)

with µ > 0. The smaller the value of µ is, the closer the solutions
of problem (26) and (27) become to each other. We now note that

V2 = diag{V2
` }L`=1 =

1

2
(IS −AT), A , diag{A`}L`=1 (28)

Applying an incremental gradient descent steps w.r.t. W using step-
size µ to problem (27), we get:

ζi = Wi−1 − µη∇WP(Wi−1)

ψi = ζi − µ∇WJ (ζi)

Wi = ψi − µ
(

2

µ
V2

)
ψi = ATψi

(29)

Using the definition of J (W) from (25), we have:
∇WJ (W) = col {∇W`J (W)}L`=1 (30)

where
∇W`J (W) = col{∇w`

k
Jk(wk)}k∈C` (31)

and likewise for ∇WP(W). Therefore, using the definition of A in
(28), recursion (29) can be written in a distributed form as listed in
(32a)–(32c). In steps (32a)–(32b), a traditional gradient-descent step
is applied by each agent using the gradients of the corresponding
risk and penalty functions. The last step (32c) is a combination step,
where for every ` ∈ Ik, each agent k combines its estimate for ψ`k,i
with the neighbors that belong to C` using weights {a`,sk}s,k∈C` .
It is assumed that ψk,i and ζk,i have the same structure as wk,i,
i.e., ψk,i = col{ψ`k,i}`∈Ik and ζk,i = col{ζ`k,i}`∈Ik . This latter
step requires agent k to know the set Nk ∩ C` for every ` ∈ Ik,
i.e., to know the collection of neighboring agents that share the
vector w` for every ` ∈ Ik as part of their cost. In most networked
problems of interest, this scenario is satisfied. For instance, in many
applications Ik = Nk and hence C` will generally be defined by a
subset of the neighboring agents (i.e., L = N and Ck = Nk) [17],
[18]. Therefore the set Nk ∩ C` for every ` ∈ Ik can be easily
known by agent k. See simulation section for an example.

IV. CONVERGENCE ANALYSIS
To facilitate the convergence analysis, we introduce the following

assumptions, which are common in the study of distributed learning

Algorithm 1 (Coupled diffusion strategy)

ζk,i = wk,i−1 − µη∇wk
pk(wk,i−1) (32a)

ψk,i = ζk,i − µ∇wk
Jk(ζk,i) (32b)

w`
k,i =

∑
s∈Nk∩C`

a`,skψ
`
s,i, ∀ ` ∈ Ik (32c)

methods. These assumptions are also automatically satisfied by
many important cases of interest – see, e.g., [1], [2].

Assumption 2. (Individual costs): It is assumed that the individ-
ual cost functions, Jk(wk), are each twice-differentiable, convex,
and have Hessian matrices that are bounded from above:

∇2
wk
Jk(wk) ≤ δkIQk (33)

Moreover, for every cluster C` there exists at least one agent ko
such that:

∇2
wko

Jko(wko) > νkoIQko
(34)

where the scalars {δk} and {νko} are strictly positive.
�

Note that assumption (34) is similar to requiring at least one of
the costs Jk(.) to be strongly convex within each cluster – see [2],
[8]. This guarantees that the aggregate cost is strongly convex, and
therefore a unique minimizer exists.

Assumption 3. (Penalty functions): The penalty function pk(wk)
is twice-differentiable and its Hessian matrix is upper bounded:

∇2
wk
pk(wk) ≤ δp,kIQk (35)

for some strictly positive scalars {δp,k}. �

In many applications in practice, the true gradient vectors are
not available. Therefore, we model the approximate gradient vector
for each agent at time i by:

∇̂wkJk(ζk,i) , ∇wkJk(ζk,i)− vk,i(ζk,i) (36)
where vk,i(ζk,i) is a random gradient noise term that is required
to satisfy certain conditions.

Assumption 4. (Gradient noise model): Conditioned on the past
history of iterates F i , {wk,j−1 : k = 1, ..., N and j ≤ i}, the
gradient noise vk,i(ζk) is assumed to satisfy:

E {vk,i(ζk) | F i} =0 (37)

E {‖vk,i(ζk)‖2 | F i} ≤ᾱk‖ζk‖
2 + σ̄2

k (38)
for some nonnegative constants ᾱk and σ̄2

k. �

Using (36), the coupled diffusion algorithm (32) becomes
ζk,i = wk,i−1 − µη∇wkpk(wk,i−1) (39a)
ψk,i = ζk,i − µ∇wkJk(ζk,i) + µvk,i(ζk,i) (39b)

w`
k,i =

∑
s∈Nk∩C`

a`,skψ
`
s,i, ∀ ` ∈ Ik (39c)

We are now using boldface letters to highlight the fact that the
variables are stochastic in nature due to the randomness in the
gradient noise component. We will measure the performance of the
distributed strategy by examining the mean-square-error between
the random iterates w`

k,i and the corresponding optimal component
from (5), denoted by w`,o. For this purpose, we note first that in
terms of the optimal solution w`,? for the penalized problem (10),
we have:

lim sup
i→∞

E ‖w`,o −w`
k,i‖2

≤ 2 ‖w`,o − w`,?‖2︸ ︷︷ ︸
Approximation Error

+2 lim sup
i→∞

E ‖w`,? −w`
k,i‖2 (40)
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It was shown in [2] that
lim
η→∞

‖wo − w?‖ = 0 (41)

Theorem 1. (Mean-square convergence): If wo is a regular1

point for the constraints, then, under Assumptions 1–4, the coupled
diffusion algorithm (39) converges for sufficiently small step-sizes
µ. Moreover, for every agent k, it holds that:

lim sup
i→∞

E ‖w`,? −w`
k,i‖2 ≤ O(µ) +O(µ2η2), ∀ ` ∈ Ik (42)

Proof: See [27]. �

Theorem 1 means that the expected squared distance between w`
k,i

and w`,? is on the order µ or (µη)2, whichever is larger. Thus
we can get arbitrarily close to the optimal penalized solution w?

by choosing µ arbitrarily small. Moreover, from (41), we conclude
that as η →∞ and µ→ 0, the iterates w`

k,i approach the optimal
solutions of the unconstrained problem w`,o asymptotically.

V. SIMULATIONS

In this section we illustrate our results for mean square error
(MSE) networks [3]. Consider a network of N agents where each
agent k is observing streaming data {dk(i),uk,i} that satisfy the
regression model:

dk(i) + uk,iw
k,• + vk(i) (43)

where uk,i ∈ R1×Mk with covariance Ru,k = EuT
k,iuk,i, w

k,• ∈
RMk is unknown, and vk(i) is a noise process independent of
uk,i with variance σ2

v,k. The individual mean-square-error costs
are defined by:

Jk(wk) = E |dk(i)− uk,iwk|2 (44)
The goal of the network is to solve the following problem:

min
w1,....,wN

N∑
k=1

Jk(wk), s.t
∑
s∈Nk

Bskw
s = bk, ∀ k (45)

where the matrices Bsk ∈ RPk×Ms and the vector bk ∈ RPk

are known by agent k only. The linear constraints in (45) couples
the parameters {w1, · · · , wN} across the network. For example, in
beamforming applications, the constraints can be used to specify
the desired response of the beamformers to certain directions [28]
or it can be used in multitask applications where the task of each
agent is coupled with its neighbors – see [24].

1wo is a regular point if the gradients of the equality constraints and the
active inequality constraints {∇whk,u(wo),∇wgk,v′ (wo)} are linearly
independent (where an active constraint means that gk,v′ (w

o
k) = 0 for

some v′, where wok = col{w`,o}`∈Ik ).

Fig. 3: Network topology used in simulation.

In our simulation, we considered the network with N = 10
agents shown in Fig. 3. Each parameter wk,• is a 2 × 1 vector
chosen from the standard Gaussian distribution. The inputs uk,i
are zero mean random vectors with covariance Ru,k = σ2

u,kI2,
where σ2

u,k was chosen uniformly at random between 1 and 3. The
noise vk(i) is a zero-mean i.i.d Gaussian random variable with
variance σ2

v,k chosen uniformly at random between −25 dB and
−35 dB. The elements of Bsk and bk were generated uniformly
at random between (−2, 1) and (0, 1) respectively. The constraints
were penalized by using the quadratic penalty function δEP(x) =
x2. Note that existing algorithms in the literature require solving
a deterministic inner minimization step in each iteration (see [18],
[21]–[23]) and we are dealing with streaming data {dk(i),uk,i}
whose statistics are not known. Thus, these algorithms do not fit
this scenario and cannot be directly applied to solve (45). Therefore,
we will compare our algorithm with a penalty-based centralized
recursion that assumes knowledge of all costs and constraints:

ψi = wi−1 − µηR ∇wpglob(wi−1) (46a)

wi = ψi − µR ∇wJglob(ψi) (46b)

where pglob(w) =
N∑
k=1

pk(wk) and R = diag{ 1
N`
IM`}

L
`=1 used to

make the convergence rate similar for fair comparisons. Figure 2a
shows the instantaneous network MSD

MSD =

L∑
`=1

1

N`

∑
k∈C`

E ‖w`,? −w`
k,i‖2 (47)

to the penalized optimal values for µ = 0.005 and η = 10 for
both the coupled diffusion and the centralized recursions. Figure
2b plots the steady-state MSD for different values of step-sizes.
We see that the smaller the value of µ is, the closer the solution
is to w? and the closer the coupled diffusion strategy become to
the centralized one. Finally, Figure 2c shows the steady-state MSD
of the coupled diffusion strategy to the constrained optimal wo for
different values of µ and η. We see that the larger η and the smaller
µ are the closer we get to wo. All results were averaged over 100
independent runs.

(a) (b) (c)
Fig. 2: (a) MSD learning curve for µ = 0.005 and η = 10. (b) MSD for different values of step size µ with η = 10. (c) Average
steady-state error to wo for different values of η and µ.
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