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ABSTRACT

In this paper, we are concerned with the problem of network mon-
itoring and more specifically the task of Heavy Hitter (HH) detec-
tion and flow size estimation. We propose an algorithm, which is
based on the interaction between two different entities, namely the
controller and the switches. The controller, which has a centralized
view of the network and has access to aggregate information, is per-
forming an estimation of the flow sizes by exploiting an adaptive
compressed sensing technique. On top of that, a properly modified
sketch based algorithm that takes into account the information com-
ing from the first stage is deployed on the switches. The theoretical
properties of the algorithm are discussed and numerical experiments
using both synthetic and real network data verify that the proposed
algorithm outperforms the existing state of the art approach.

Index Terms— Count-Min, Compressed Sensing, SDN

1. INTRODUCTION

Software-Defined Networking (SDN) has radically transformed the
landscape in several fields of networking, such as the network ar-
chitecture of data centers, carrier networks, etc. The SDN architec-
ture provides programmable data planes that can be configured from
a centralized controller platform. This engenders a separation be-
tween control and forwarding planes, thus creating an opportunity
to implement routing processes that are more efficient than classic
ones: in fact, the controller can take real-time decisions at a (logi-
cally) centralized location using an accurate and global view of the
network.

The task of network monitoring is of paramount importance in
SDN as it plays an important role in crucial problems, such as: load
balancing, network routing, flow splitting, capacity expansion, etc,
e.g., [4, 5, 15, 10]. At the heart of network monitoring lies the acqui-
sition and storage of accurate measurement of the traffic that passes
through the switches of the network. Nevertheless, as the traffic in-
creases, the number of packets and flows (aggregate of packets) that
exist in the network, becomes huge and storing all the available in-
formation turns out to be impractical and in many scenarios infeasi-
ble. For that reason, various sampling and compression techniques
have been utilized in SDN. The most typical one is the packet sam-
pling approach, which samples one packet in a stream of N packets.
This technique is also adopted in the widely used Cisco NetFlow pro-
tocol, [1], for flow measurement. Despite its popularity, the packet
sampling approach has an important drawback; if the frequency of
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sampling is low, then we lose a lot of information, whereas if the
frequency is high, we need high memory resources to store it. To
that direction, more sophisticated monitoring techniques have been
the focus of research for the past years, e.g., [7, 18]

One of the most important and challenging problems in network
monitoring is that of Heavy Hitter (HH) or elephant flow detection.
The term HH is a general term, which has been used in the data
stream community, e.g., [6, 17, 9], and stands for “ an element whose
frequency in a data set is no smaller than a user–supplied thresh-
old”, [8]. The problem of HH identification lays important roles in
tasks, such as, traffic accounting, traffic engineering, load balancing,
anomaly detection. However, at the same time, it is challenging due
to exploding traffic volume and the limited monitoring resources,
e.g., memory, control plane capacity. In this paper, we are concerned
with the problem of accurate and timely HH detection having at our
disposal limited resources.

1.1. State of the Art

Several papers in the SDN related literature, have studied the prob-
lem of HH detection. For example, the paper of [11] proposes iS-
TAMP, which is a method located in the controller, which estimates
HHs by using Comperessed Sensing and Multiarmed Bandits ap-
proaches. Sketch based techniques, which identify the HHs by im-
plementing Count-Min sketches in the switches, have been proposed
in [20, 14]. A TCAM-based software-defined measurement tech-
nique, has been developed in [16] where the resources are dynami-
cally updated with respect to the traffic situation.

1.2. Summary of our Contribution

In this paper we propose an algorithm for network monitoring and in
particular for HH detection and flow size estimation. The algorithm
is based on the interaction between two different components, the
controller and the switches and it comprises two steps. In the first
one, the controller, which has a centralized view of the network and
has access to aggregate information, is performing an estimation of
the flow sizes based on an adaptive compressed sensing technique
on a small subset of the data, which arrive in a streaming fashion.
In the second stage, we employ a properly modified sketch based al-
gorithm, which takes into account the information coming from the
first stage. In brief, the flows, which are identified as HHs on the pre-
vious step are monitored directly, instead of being put in the sketch,
whereas the rest are normally inserted in the Count-Min sketch. Ex-
periments using both synthetic and real data validate that the pro-
posed algorithm outperforms existing sketching approaches in terms
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Fig. 1. System architecture under consideration

of HH identification as well as HH estimation. Finally, the algorithm
is provably better than the ordinary Count-Min, since our theoretical
study suggests that it leads to a tighter error bound

2. SYSTEM ARCHITECTURE

Figure (1) shows the general architecture of the system under con-
sideration where the following entities coexist:

• packets: are the smallest units carrying data with respect to
specific protocols, e.g., TCP/IP; packets contain parts of the
message/file.

• flows: correspond to aggregates of packets from a specific
source to a specific destination. Typical examples of flows
include, youtube videos, data transfers, etc.

• centralized controller: an entity which has a view of aggre-
gate information on the links of the network. The controller
has a limited budget of TCAM (Ternary Content–Addressable
Memory) entries that can be allocated. A TCAM entry is
installed on the controller and is associated to one or more
switches of the network. Each TCAM entry can be dedicated
to aggregate specific flows, e.g., to aggregate all flows that
have a specific prefix, or can measure explicitly a specific
flow of the network.

• switches: receive packets as an input and their task is to pro-
cess and forward them to the destination device. The routing
of the packets corresponding to specific flows is determined
by the TCAM installed on them.

We consider the set S to be a steam of items, which correspond here
to flows, from a universe of n elements. To be more specific, at
each instance, say t, a packet which belongs to the item (flow) k
arrives, and its size will be denoted by ak(t). The total size of flow
k, denoted by xk that has crossed the switch during a certain time-
window [0, T ] is denoted by xk =

∑
t∈[0,T ] ak(t), where T is our

time horizon.

2.1. Count-Min Sketch

Count-Min (CM) algorithm has been originally proposed in [9] as
a low complexity approach to estimate the number of occurrences
of events of the same type over a stream of data. Count-Min ac-
complishes such task via a single pass over the whole data stream.
Naturally, Count-Min can be employed to estimate the number of
packets belonging to each flow passing through a network switch
over a certain time window (i.e., the flow rate).

Let us now describe the details of Count-Min algorithm. Count-
Min relies on a counter tableCM of dimension d×w that is updated

each time a packet (or a bunch of packets belonging to the same
flow) is examined. Typically dw � n, where n is the number of
all possible flows. This implies that the memory utilized by Count-
Min is much smaller than the memory required to store an exhaus-
tive counter vector with one element exclusively allocated for each
flow. Let h1, . . . , hd : {1, . . . , n} → {1, . . . , w} be d hash func-
tions chosen randomly from a pair-wise independent family. When
ak(t) consecutive packets belonging to flow k ∈ {1, . . . , n} are
seen passing through the switch at time t, the counters c associ-
ated to the CM table elements (1, h1(k)), . . . , (d, hd(k)) are incre-
mented by ak(t), i.e., c(i, hi(k)) ← c(i, hi(k)) + ak(t), i =
1, . . . , d. The frequency fk is estimated by Count-Min as x̂k =
min1≤i≤d c(i, hi(k)). It is already clear that x̂k is an overestima-
tion of the real value xk, since it suffers from hash collisions from
other flows. The following Theorem clarifies the memory/accuracy
trade-off underlying Count-Min.

Theorem 1. [9] For each flow k, the estimated frequency is an
overestimation of the real frequency, i.e., x̂k ≥ xk. Moreover, if
w = d e

ε
e and d = dlog 1

δ
e then the estimate x̂k is such that

x̂k ≤ xk + ε‖x‖1 k = 1, . . . , n. (1)

with probability at least 1− δ.

2.2. Compressed Sensing for HH detection

As we have already mentioned, the controller (Fig. 1) has access to
aggregate information. In particular, each TCAM entry determines
which flows will be aggregated; the controller observes the outcome
of this aggregation. Considering that the total number of TCAM
entries equals to p, this can be equivalently written as:

y = Ax, (2)

where each row of the matrix A corresponds to a TCAM rule indi-
cating which flows to aggregate. Usually in our context, the matrix
A is considered to be a binary matrix. Choosing the aggregation
matrix gives us a lot of flexibility and, in practice, it can improve
the estimation results. It is worth pointing out, that a system similar
to (2), also rises if instead of the TCAM related matrix we insert the
routing matrix; in that case, y is the load at the links of the network.1

Let us now shed some light on why this problem can be cast as a
compressed sensing one. In practical scenarios, the size of the heavy
hitters is significantly larger than the size of the rest flows whereas
at the same time their number is significantly smaller. Recalling (2)
and considering that there are K HHs on the item list, which belong
to the set S, we have:

y = AxS +AxSc ≈ AxS , (3)

where xS denotes the vector, which consists of the HHs and has zero
elsewhere and xSc is the vector in which the HHs are set equal to
0. In a nutshell, this approximation yields that the HHs dominate the
outcome of aggregation. Since the number of observations is smaller
than the unknown entries of the vector to be estimated, the system
(2) cannot be solved accurately using conventional techniques, such
as the least squares method. On the contrary, compressed sensing
techniques capitalize on the fact that the vector to be estimated is
sparse, i.e., comprises a small number of non zero coefficients and

1The estimation of the flow sizes by solving the linear system (2), where
the input matrix corresponds to the routing matrix, is a topic known as net-
work tomography and has been extensively studied over the past decades,
e.g., [19, 13]
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Algorithm 1: Compressive Adaptive Sense and Search
(CASS)

Input: number of non–zeros k.
1 Initialize: l0 = min{4k, n}, s0 = log n

l0
+ 1,

2 L = {1, 2, . . . , l0}
3 for s = 1 to s0 do
4 for l ∈ L do
5 as,l = 1Jlog(l0)−1+s,l

;
6 sense: ys,l = aTs,lx

7 sort: l1, l2, . . . , l|L| s.t. ;
99 |ys,l1 | ≥ |ys,l2 | . . . ≥ |ys,l|L| |;

1111 if s 6= s0 then
12 L = {2l1 − 1, 2l1, 2l2 − 1, . . . , 2lk − 1, 2lk};
13 else
14 Ŝ = {l1, l2, . . . , lk};
1616 x̂i = ys,i, ∀i ∈ Ŝ

17 Output: Ŝ, x̂i

can produce very accurate estimates. A typical formulation of the
CS problem can be cast as follows: minx ‖y − Ax‖2 + λ‖x‖1,
where λ is a properly defined regularization parameter and the `1
norm promotes sparsity.

Turning our focus back to our problem, since we can choose
the rows of the input matrix A (by assigning TCAM rules) then it
is better to choose the rows in a sequential fashion, i.e., fix a row,
observe the output of the system and then decide on the next one,
instead of using an a-priori chosen fixed matrix. This is the main
idea of the adaptive compressed sensing problem, e.g., [12]. The
unknown vector of flows is measured through p linear projections of
the form:

yi = aTi x, i = 1, . . . , p (4)

An adaptive compressed sensing algorithm, which is named Com-
pressive Adaptive Sense and Search (CASS), has been proposed in
[12]. This algorithm lends itself nicely to our framework, since
it considers solving the compressed sensing problem in the setup
where the non-zero unknown entries are strictly positive, which is
the case here. The algorithm is summarized in Table 1.

The algorithm takes as an input the number of non-zeros of x,
which corresponds here to the number of HHs. It is worth mention-
ing, that it is not necessary to know this number exactly, but a rough
estimate of it instead. As we will see in the simulations section the
algorithm is robust to overestimates of the actual number of HHs.
The TCAM rules, which are assigned sequentially, take the form of
vectors of length n comprising ones and zeros depending on whether
the respective flows will be aggregated or not. We define the follow-
ing sets: Jk,l =

{
(l−1)n

2k
+ 1, . . . , ln

2k

}
, k = 0, 1, . . . , logn, l =

1, . . . , 2k. For a fixed k, initially the unknown vector is measured
with l0 TCAM entries, each with support over a single dyadic sub-
interval. Afterwards, the largest k measurements in absolute value
are selected; these define the support. At the next steps, the supports
of the sensing vectors corresponding to the k largest measurements
are bisected, giving 2k support sets. These 2k support sets define the
support of the sensing vectors on step s = 2. The procedure contin-
ues sequentially taking 2k measurements on each step and bisecting
the support of the k largest measurements. At the final step, the k
largest elements together with their values are returned. For more

Algorithm 2: CoMiC algorithm for HH detection
Input: observation ratio for CASS: α, number of HHs k,

Count-Min table dimensions: d, w.
1 Initialize: l0 = min{4k, n}, s0 = log n

l0
+ 1

2 L = {1, 2, . . . , l0}, d, w
3 while i ≤ Nα do
4 run CaSS with k as an input to

5 return Ŝ
6 while i ≥ N ∗ α do
7 if k /∈ Â then
8 Add item k to CM table

9 else
10 Add it in the queue monitor it directly

11 Output: Indices and size of HHs

details the reader is referred to [12].

3. THE COMIC ALGORITHM

So far techniques that have been proposed in the literature try to esti-
mate the sizes of the flows and/or the HHs by developing algorithms
which exploit information coming from either the controller or the
switches. Nevertheless, these two units can collaborate and one can
pass information to the other. Here, we develop an algorithm that
can facilitate this interaction between the controller and the switches.
Our algorithm processes in two steps. In the first step the controller
gathers aggregate information coming from the TCAM rules. Then,
the CASS algorithm is applied and we obtain a first estimate of the
HHs; the set of identified HHs, will be denoted by Ŝ. The size of
the data that will be used in this step is determined by a user defined
parameter α ∈ [0, 1]; in the CASS step αN packets are utilized,
where N is the total number of packets. This is the set of potential
HHs. After the estimation of Ŝ we continue by inserting information
into our Count-Min sketches. Nevertheless, a flow is inserted in the
sketch only if it doesn’t belong to the set Ŝ. On the contrary, items
that belong to Ŝ are inserted to a special queue of size k. In this
queue, there is an cell per flow so that no collisions exist and the size
of the potential HHs is directly measured. The steps of the CoMiC
algorithm are detailed in Table 2.

The reasoning behind the algorithm is the following. We are in-
terested in estimating the size of HH flows as accurately as possible.
From a practical perspective this is important because HHs need a
special treatment, e.g., alteration in their routing decisions, assign-
ment of specific TCAM rules for them, etc. From a theoretical per-
spective, as it can be seen from (1), the HHs dominate the term ‖x‖1
and if one discards them from the sketch, as we do here by putting
them in the queue, then the upper bound of the error can be signif-
icantly reduced. In order to discard them, we first use the CASS
algorithm on a subset of our data so as to estimate the set of poten-
tial HHs. Roughly speaking, this gives us a prior knowledge about
the flows and when we construct our sketch we take this knowledge
into account. The performance improvement that comes from this
prior knowledge compared to the vanilla sketching algorithm, will
be justified in the next sections both theoretically and practically.

Remark 1. It is worth pointing out that there is an underlying as-
sumption in our proposed algorithm. In particular, we assume that
during the first stage, i.e., the stage of collection and aggregation,
the set of HHs is the same with the set of HHs at the second stage,
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i.e., the stage where we build our sketch. Experiments using real
data validate that this assumption holds in practice

Remark 2. The a-priori knowledge, that comes from the use of the
CaSS algorithm on a subset of our data, is beneficial for our algo-
rithm. To be more specific, under certain assumption with respect to
the flow size it can be shown that Denoting by x̂i the estimate of the
i–th item, it holds that:

xi ≤ x̂i ≤ xi + ε′‖x‖1, (5)

where ε′ is strictly smaller than the ε occurring by the Count-Min
algorithm

4. NUMERICAL RESULTS

In this section, we will evaluate the performance of the CoMiC al-
gorithm using both synthetic and real–world data. We compare the
proposed algorithm, with the vanilla Count-Min algorithm.

4.1. Synthetic Data

In this set of experiments, the data are generated with respect to
the power law distribution. This distribution approximates reason-
ably well the internet traffic, e.g., [3]. The algorithms will be tested
in scenarios with different distributions, which stem from different
parametrizations. More specifically, the probability for a packet be-
longing to flow i is 1

(i+q)β
, where q gives a starting point and β is a

parameter that determines the tail of the distribution. We will con-
duct different experiments for different values of β and q. In total,
there are 10000 packets belonging to 100 flows. We set φ equal to
0.02. Regarding the Count-Min sketch, there are 5 hash functions,
each of length 11, hence a total size of 55. It is obvious that the com-
pression rate equals to 55

100
≈ 1

2
. Regarding the CoMiC algorithm

we have the following. The portion of data related parameter equals
to α = 0.3 and we use the CASS having as an input a value of k
equal to 2K, i.e., twice the size of the true HHs.

In the first experiment, we set q = 1, β = 1; the histogram of
the flow sizes is give in Fig. 2. This distribution approximates well
the network traffic, yet HH detection using it becomes more chal-
lenging, because there are many flows, the size of which is smaller
yet comparable to that of the HHs. So if there are collisions between
these flows in the same bucket then these will be falsely reported
as HHs. We present the following metric: #EstimatedHHs

#HHs
, i.e., the

number of identified HHs divided by the actual number of HHs us-
ing the CoMiC algorithm and the Count-Min. We also present the
distance of the estimated HHs from the actual ones, i.e., ‖x̂S−xS‖.

1. It can be readily observed that the Count-Min fails to identify

Metric CoMiC CM

#EstimatedHHs/#HHs 1.55 10.89
‖x̂S − xS‖ 0 1063

Table 1. Results for the first experiment

and estimate the size of the HHs, due to the shape of the flow size
distribution. On the contrary, using the CoMiC algorithm the number
of false positives is significantly reduced and the size of the correctly
identified HHs is perfectly estimated.

Fig. 2. Flow size histogram for the first experiment

Fig. 3. Flow sizes for the Caida data

4.2. Real Data

In this section we are going to evaluate the performance of the al-
gorithms on a real data scenario. In particular, we will apply our
algorithm on the CAIDA UCSD Anonymized Passive OC48 Internet
Traces Dataset, [2]. In this scenario a total number of 2606 flows is
considered. The flow sizes are illustrated in Fig. 3. The dimension of
the sketch table in both the algorithms equals to 20× 50 so we have
in total 1000 buckets, leading to a compression rate ≈ 2/5. For the
CoMiC algorithm we fix α = 0.3 and the number of HHs utilized
in the first step equal to 2K. Finally, φ is set equal to 0.02, leading
to K = 5. The vector of sizes of the actual HHs equals to xS =
[271060, 238489, 237636, 214125, 201536]T and the estimated
one given by the Count-Min is:
x̂S = [315512, 285488, 270763, 240524, 236395]T and the esti-
mated values from the CoMiC algorithm are:
x̂S = [282682, 238489, 249977, 214125, 201536]T . The re-
sults are presented in Table 2. It can be seen that in this experiment

Metric CoMiC CM

#EstimatedHHs/#HHs 1.6 1.8
‖x̂S − xS‖ 84819 16952

Table 2. Results for the Caida experiment

the CoMiC algorithm slightly outperforms the Count-Min one in
terms of false positives. Moreover, the proposed scheme leads to a
significantly improved estimation error. Nevertheless, it should be
mentioned that compared to the previous examples, in which the
estimation error was zero, here it takes a relatively high value.
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