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ABSTRACT

Wireless distributed computing presents new opportunities to exe-
cute intelligent tasks on mobile devices for low-latency applications,
by wirelessly aggregating the computation and storage resources a-
mong mobile devices. However, for low-latency applications, the
key bottleneck lies in the exchange of intermediate results among
mobile devices for data shuffling. To improve communication ef-
ficiency therein, we establish a novel interference alignment condi-
tion by exploiting the locally computed intermediate values as side
information. The low-rank optimization model is further developed
to maximize the achieved degrees-of-freedom (DoFs). Unfortunate-
ly, existing convex relaxation based approach fails to yield satisfied
performance due to the poor structure in the formulated low-rank
optimization problem, for which we develop a novel difference-of-
convex (DC) programming based algorithm. We show that this new
approach can significantly improve communication efficiency and
the achievable DoF is independent of the number of mobile devices.

Index Terms— Wireless distributed computing, low rank, data
shuffling

1. INTRODUCTION

Machine and deep learning has become a key enabling technology
for big data analytics, thereby providing diversified artificial intelli-
gence applications, e.g., computer vision and natural language pro-
cessing. Moreover, the proliferation of smart mobile devices and
Internet-of-Things (IoT) devices, has made it possible to execute
real-time and private machine learning applications on the collect-
ed input data directly from sensors in end devices. The emerging
applications for mobile edge intelligence include augmented reality,
smart vehicles, and drones. However, the requirement of ultra-low
response latency [1] for executing intensive computation tasks on
resource-constrained end devices [2] remains one of the key chal-
lenges. Given limited resources of computation, storage and energy
at mobile devices, it’s generally infeasible to accomplish computa-
tion tasks directly on a single device. Wireless distributed computing
[3] presents promises to support computation intensive intelligent
tasks execution on each end device by pooling the computation and
storage resource among the devices.

In wireless distributed computing systems for large-scale intelli-
gent tasks, the dataset (e.g., a feature library of objects) is normally
too large for storing in a single mobile device. It thus can be stored
across devices, during the dataset placement phase, supported by the
distributed computing framework such as MapReduce [4]. With the
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input data (e.g., the feature vector of an image), each mobile device
then performs local computation based on the locally stored dataset,
which is called the map phase. By exchanging the computed inter-
mediate values among devices (i.e., shuffle phase), the output (e.g.,
the inference result of the image) of each mobile device can be con-
structed with additional local computations (i.e., reduce phase). To
enable real-time and low-latency applications, the inter-device com-
munication for data shuffling becomes the main bottleneck. Recent
works [3] and [5] proposed coding schemes to reduce the communi-
cation load (e.g., the number of information bits) for data shuffling
in wireline and wireless distributed computing system respectively.

However, in wireless networks with limited spectral resources
and interference, it is also critical to improve the communication
efficiency (i.e., achieved data rates) for data shuffling. In this pa-
per, we propose a systematic linear coding approach to improve the
communication efficiency in the shuffle phase. Specifically, by ex-
ploiting the locally computed intermediate values in the map phase
as the side information, we establish a novel interference alignmen-
t [6] (IA) condition for data shuffling. Note that orthogonal uplink
transmission is assumed in [3], while we assume co-frequency trans-
mission in both uplink and downlink to improve spectral efficiency.
Based on the proposed IA condition, we further develop a low-rank
model to maximize the achievable degrees-of-freedom (DoF), i.e.,
the first-order characterization for the achievable data rate. Unfortu-
nately, due to the non-convexity of rank function, the resulting low-
rank optimization problem is computationally infeasible.

Low-rank approaches have attracted enormous attention in ma-
chine learning, high-dimensional statistics, and recommendation
system [7]. A growing body of research focuses on developing
convex and nonconvex algorithms. In particular, nuclear nor-
m relaxation approach is well-known as the convex envelope of
rank function [7]. To further improve the performance, iterative
reweighted least square algorithm [8] is proposed by alternating be-
tween minimizing weighted Frobenius norm and updating weights.
Unfortunately, due to poorly structured affine constraint in the pro-
posed low-rank optimization model, both approaches fail to yield
satisfactory performance. We thus present a novel DC (difference-
of-convex-functions) [9] programming based approach for the pro-
posed low-rank problem. Specifically, we sequentially determining
the minimal k such that the difference between nuclear norm and
Ky Fan k-norm [10] (i.e., the sum of largest-k singular values of a
matrix) becomes zero. The resulting DC programming subproblem
can be solved by the principles of majorization-minimization (MM)
algorithm [9]. Numerical experiments show that the DC algorithm
significantly outperforms state-of-the-arts, and the achievable DoF
remains constant when the number of mobile devices increase.
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2. SYSTEM MODEL

In this section, we shall present the wireless distributed computing
system, followed by transceiver design with the interference align-
ment condition to improve the communication efficiency for accom-
plishing the computation tasks.

2.1. Computation Model

We consider a wireless distributed computing system with K mo-
bile users, where all users communicate through a common wireless
access point (AP) as shown in Fig. 1a. Suppose each mobile user
is equipped with L antennas and AP is equipped with M antennas.
The dataset (e.g., a feature library of objects in object recognition)
of the system is evenly separated toN files f1, · · · , fN , each with F
bits. Each user k has a computation task φk(dk; f1, · · · , fN ) which
maps the input dk (e.g., the feature vector of an image) to an output
result (e.g., the inference result of the image). We consider the sce-
nario that the local memory of each user can only store up to µ files
(i.e., µF bits with µ < N ), while the entire dataset can be stored
collectively by all the users. The index set of files stored at the k-th
node is denoted by Fk ⊆ [N ] = {1, 2, · · · , N} where |Fk| ≤ µ for
all k ∈ [K] and ∪k∈[K]Fk = [N ].

In this paper, we adopt the distributed computing framework
such as MapReduce [4] and Spark to accomplish the computation
tasks for each mobile users. Specifically, the computation task φk is
assumed to be decomposed as follows [3]

φk(dk; f1, · · · , fN ) = hk(gk,1(dk; f1), · · · , gk,N (dk; fN )). (1)

Here, gk,t(dk; ft) is the Map function, which maps input dk
and file ft into an intermediate value wk,t with E bits, and
hk(wk,1, · · · , wk,N ) is the Reduce function which maps all re-
quired intermediate values wk,1, · · · , wk,N into the output of the
joint computation task. Note that we focus on applications in which
the sizes of inputs and intermediate values are small enough so that
they can be stored locally and the overhead of collecting inputs is
negligible. The overall procedure for distributed computing shall be:
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Fig. 1: a) Wireless distributed computing system where fFk = {fj :
j ∈ Fk}. b) Distributed computing model.

• Dataset Placement Phase: To execute Map Phase, we need
to determine file placement Fk and delivery files in advance.

• Map Phase: Compute intermediate values ws,t locally with
map functions gs,t for all s ∈ [K], t ∈ Fk.

• Shuffle Phase: User k shall collect the intermediate values
{wk,t : t /∈ Fk} that cannot be computed locally and ex-
change intermediate values wirelessly with others for task φk.

• Reduce Phase: Each mobile user constructs the output value
by mapping all required intermediate values into the output
value, i.e., φk(dk; f1, · · · , fN ) = hk(wk,1, · · · , wk,N ).

2.2. Communication Model

Given the dataset placement, this paper aims at improving the com-
munication efficiency for the Shuffle Phase. Specifically, we denote
the entire set of messages (i.e., all intermediate values {wk,n : k ∈
[K], n ∈ [N ]}) by {W1, · · · ,WT } with T = KN . Let Tk ⊆ [T ]
be the index set of intermediate values available at mobile user k and
Rk ⊆ [T ] be the index set of intermediate values required by mobile
user k. Here, we have ∪k∈[K]Tk = [T ], Tk ∩ Rk = ∅. As a result,
the Shuffle Phase is reformulated as a message delivery problem with
side information. As shown in Fig. 1a, the Shuffle Phase consists of
uplink multiple access (MAC) stage and downlink broadcasting (BC)
stage to construct the output in the Reduce Phase.

Let xk = [xk[i]] ∈ CLr be the transmitted signal at mobile user
k, and xk[i] ∈ Cr is the signal transmitted at the i-th antenna over r
channel uses. Then the received signal at the s-th antenna of AP in
uplink MAC stage over r channel use is given by

y[s] =

K∑
k=1

L∑
i=1

Hu
k [s, i]xk[i] + nu[s], (2)

where Hu
k [s, i] ∈ C is the flat-fading channel coefficient between

the i-th antenna of the k-th mobile user and the s-th antenna of AP,
and nu[s] ∈ Cr is the additive isotropic white Gaussian noise. In
this work, we assume the block fading channel where the channel
coefficients remain unchanged over r channel uses. The received
signal at the AP is given by

y =

K∑
k=1

(Hu
k ⊗ Ir)xk + nu, (3)

where ⊗ denotes Kronecker product, y = [y[s]] ∈ CMr , Hu
k =

[Hu
k [s, i]] ∈ CM×L is the channel coefficient matrix between AP

and the k-th mobile user in uplink MAC stage, and nu ∈ CMr

is the additive isotropic white Gaussian noise. After receiving the
signal from all mobile users, AP will forward it to each mobile user
directly, which means that the signal received by user k is given by

zk = (Hd
k ⊗ Ir)y + nd

k. (4)

Here Hd
k ∈ CL×M is the downlink channel coefficient matrix be-

tween AP and mobile user k. nd
k ∈ CLr is the downlink Gaussian

noise. Then the overall input-output relationship from mobile user
to mobile user can be represented by

zk =

K∑
i=1

(Hki ⊗ Ir)xi + nk, (5)

in which Hki = Hd
kH

u
i ∈ CL×L is the equivalent channel coef-

ficient matrix from the i-th mobile user to the k-th mobile user, and
nk = (Hd

k ⊗ Ir)n
u + nd

k is the effective additive noise. Here we
use the equation (A⊗B)(C⊗D) = (AC)⊗(BD). For message
l at user k, the degree-of-freedom (DoF) is defined as

DoFk,l
4
= lim sup

SNRk,l→∞

Rk,l

log(SNRk,l)
, (6)

where SNRk,l is the signal-to-noise-ratio (SNR) and the rate Rk,l

is achievable if the error probability can be arbitrarily small with
certain coding scheme.

2.3. Interference Alignment Conditions for Linear Coding

Linear schemes for transceiver design are widely used such as in
interference alignment [6] and index coding [11] because of the low-
complexity and optimality in DoF. Therefore, we focus on linear
coding scheme in this work. Let sj ∈ Cd be the representative
vector for message Wj with d datastreams where each datastream
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carries one degree-of-freedom (DoF). Then the transmitted signal at
the i-th antenna of user k is given by

xk[i] =
∑
j∈Tk

Vkj [i]sj , (7)

where Vkj [i] ∈ Cr×d is the precoding matrix corresponding to the
i-th antenna of mobile user k for message j. Let Ukl ∈ Cd×Lr be
the decoding matrix for each message Wl, l ∈ Rk. Specifically, we
want to decode message Wl from

z̃kl = Uklzk = Ukl

K∑
i=1

(Hki ⊗ Ir)
∑
j∈Ti

Vijsj + nkl, (8)

in which Vkj = [Vkj [i]] ∈ CLr×d is the precoding matrix, and
nkl = Ukl((H

d
k ⊗ Ir)n

u + nd
k). We observe that z̃kl is the

linear combination of the entire message set which can be split in-
to three parts: desired message, interferences, and locally available
messages, i.e.,

z̃kl = I1( sl︸︷︷︸
desired message

) + I2( {sj : j ∈ Tk}︸ ︷︷ ︸
locally available messages

) + I3({sj : j /∈ Tk ∪ {l}}︸ ︷︷ ︸
interferences

).

Specifically, linear operators I1, I2, I3 are given by

I1(sl) =
∑

i:l∈Ti

Ukl(Hki ⊗ Ir)Vilsl,

I2({sj : j ∈ Tk}) =
∑
j∈Tk

∑
i:j∈Ti

Ukl(Hki ⊗ Ir)Vijsj ,

I3({sj : j /∈ Tk ∪ {l}}) =
∑

j /∈Tk∪{l}

∑
i:j∈Ti

Ukl(Hki ⊗ Ir)Vijsj .

We now propose the following interference alignment conditions

det

∑
i:l∈Ti

Ukl(Hki ⊗ Ir)Vil

 6= 0, (9)

∑
i:j∈Ti

Ukl(Hki ⊗ Ir)Vij = 0, j /∈ Tk ∪ {l} (10)

to estimate Wl from s̃l = I−1
1 (z̃kl − I2({sj : j ∈ Tk})) for all

l ∈ Rk, k ∈ [K].
If conditions (9) (10) are satisfied, we can obtain interference-

free channels for the transmission of d-dimensional messages over
r channel uses. DoFk,l is thus given by d/r. Hence the symmetric
DoF (largest achievable DoF for all k, l) is

DoFsym = d/r. (11)

Consequently, achievable symmetric DoF can be maximized by find-
ing the minimum r such that (9) (10) are satisfied.

3. A LOW-RANK FRAMEWORK FOR DATA SHUFFLING

In this section, we propose a low-rank optimization formulated to
maximize the achievable symmetric DoF in the Shuffle Phase, fol-
lowed by a DC programming based algorithm.

3.1. Low-Rank Optimization Approach

Consider the proposed interference alignment conditions (9) (10)
for data shuffling in wireless distributed computing. Without
loss of generality, to enable efficient algorithms design, we set∑

i:l∈Ti Ukl(Hki ⊗ Ir)Vil = I in (9). Let Ukl = [Ukl[1], · · · ,
Ukl[L]], Ũ

H
kl = [Ukl[1]

H, · · · ,Ukl[L]
H] ∈ CLd×r, ŨH = [ŨH

11

, · · · , ŨH
1T , · · · , ŨH

KT ] ∈ CLdKT×r, Ṽij = [Vij [1], · · · ,Vij [L]] ∈

Cr×Ld, Ṽ = [Ṽ11, · · · , Ṽ1T , · · · , ṼKT ] ∈ Cr×LdKT ,X =

Ũ Ṽ = [Ukl[m]Vij [n]] = [Xk,l,i,j [m,n]] ∈ CLdKT×LdKT .
Note that

Ukl(Hki ⊗ Ir)Vij =

L∑
m=1

L∑
n=1

Hki[m,n]Ukl[m]Vij [n], (12)

where Hki[m,n] is the (m,n)-th entry of matrix Hki. We rewrite
the interference alignment conditions (9) (10) as∑

i:l∈Ti

L∑
m=1

L∑
n=1

Hki[m,n]Xk,l,i,l[m,n] = I, (13)

∑
i:j∈Ti

L∑
m=1

L∑
n=1

Hki[m,n]Xk,l,i,j [m,n] = 0, j /∈ Tk ∪ {l},(14)

which can be denoted asA(X) = b with the linear operatorA(·) as
a function of {Hki}. Note that the rank of matrix X is equal to the
number of channel uses r, i.e.,

rank(X) = r. (15)

We thus propose the following low-rank optimization approach to
find the maximum achievable symmetric DoF

P : minimize
X∈CD×D

rank(X)

subject to A(X) = b, (16)

where D = LdKT . However, problem P is computationally in-
feasible due to the non-convexity of the rank function.

3.2. Problem Analysis

Low-rank approach has caught enormous attention in machine learn-
ing, high-dimensional statistics, and recommendation systems [7].
Unfortunately, low-rank problems are highly intractable due to the
non-convex rank function, for which various convex and non-convex
optimization algorithms have been developed. In particular, nuclear
norm [7] has demonstrated its effectiveness as the convex relaxation
for the rank function. However, it yields poor performance due to the
poor structure of the affine constraint in problem P . For example, in
the scenario of two users with K = N = 2, µ = d = L = M = 1,
problem P is given as

minimize
X

rank(X)

subject to X =

[
? ? 1/H12 0
0 1/H21 ? ?

]
, (17)

where the value of ? is arbitrary (here we have removed the rows and
columns that are all unconstrained). In this case, the nuclear norm
approach always returns full rank solution while the optimal rank is
1. To further improve the performance of nuclear norm relaxation
and enhance low-rankness, the iterative reweighted least square al-
gorithm IRLS-p [8] (0 ≤ p ≤ 1) is proposed by alternating between
minimizing weighted Frobenius norm and updating weights. How-
ever, it still yields poor performance when applied to problem P
given the poorly structured affine constraint. Therefore, we shall
present a novel difference-of-convex-functions algorithm (DCA) to
achieve considerable performance improvement.

3.3. A DC Algorithmic Approach

We first present a novel difference-of-convex-functions (DC) repre-
sentation [10] for the rank function, before developing a novel DC
algorithmic approach to solve problem P .
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Definition 1 Ky Fan k-norm [12]: The Ky Fan k-norm of a matrix
X is the sum of its largest-k singular values, i.e.,

|||X|||k =

k∑
i=1

σi(X), (18)

where σi(X) is the i-th largest singular value of X . We thus obtain
a DC representation for the rank function based on Definition 1.

Proposition 1 For any matrix X ∈ Cm×n, the following equation
holds:

rank(X) = min{k : ‖X‖∗−|||X|||k = 0, k ≤ min{m,n}}. (19)

Proof 1 Given rank(X) = r we have σi(X) = 0 ∀i > r and
σi(X) > 0 ∀i ≤ r. Since ‖X‖∗ − |||X|||k =

∑k
i=k+1 σi(X),

the minimum k such that ‖X‖∗ − |||X|||k = 0 will be exactly r.
Conversely, r = min{k : ‖X‖∗ − |||X|||k = 0} we deduce that
σi(X) = 0 ∀i > r and σi(X) > 0 ∀i ≤ r. Then rank(X) = r.

Algorithm 1: DC Algorithm (DCA) for P

Input: A, b,, accuracy ε.
for k = 1, · · · , D do

Initialize: X[k]
0 ∈ CD×D, t = 1

while not converge do
Compute ∂|||X[k]

t−1|||k
Obtain the optimal solution X

[k]
t of 21

end
if ‖X[k]‖∗ − |||X[k]|||k < ε then

return X[k]

end
end
Output: X[k] and rank k.

Therefore, by representing the rank function with Ky Fan k-
norm, problem P can be solved by finding the minimum k such
that the optimal objective value is zero in problem

minimize
X∈CD×D

‖X‖∗ − |||X|||k

subject to A(X) = b. (20)

Due to the nonconvex DC objective function, we adopt the majorization-
minimization (MM) algorithm [9] to iteratively solve a convex sub-
problem by linearizing |||X|||k as Tr(∂|||Xt|||k, |||X|||k), i.e., solving

minimize
X∈CD×D

‖X‖∗ − Tr(∂|||Xt−1|||k, |||X|||k)

subject to A(X) = b (21)

at the t-th iteration. Here Xt−1 is the solution to (21) in the t − 1
iteration. ∂|||Xt|||k [12] is the subdifferential of |||X|||k at Xt and

∂|||Xt|||k = {Udiag(q)V H, q = [1, · · · , 1︸ ︷︷ ︸
k

, 0, · · · , 0︸ ︷︷ ︸
D−k

]T }, (22)

in which Xt = UΣV H is the singular value decomposition (SVD)
of Xt. The whole DC algorithm (DCA) is shown in Algorithm 1.

4. SIMULATION

In this section, we evaluate the convergence rate and achievable DoF
in different settings of state-of-art algorithms. For IRLS-p algorithm
we set p = 0.5 and its parameters are chosen with cross validation.
Consider a system with symmetric antennas, i.e., L = M , and each
mobile user stores µ files uniformly at random. The convergence
characteristics of the DCA and IRLS-p algorithm are demonstrated
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Fig. 2: Numerical experiments: a) The convergence of the DCA al-
gorithm (r = 12) and IRLS-p algorithm in which K = 5, N =
10, µ = 5. b) Maximum achievable symmetric DoF over µ under
K = 5, N = 10, L = M = 2. c) Maximum achievable symmetric
DoF over the number of antennas (K = N = 4, µ = 1). d) Max-
imum achievable symmetric DoF over the number of mobile users
with uniform placement strategy where N = 4, L =M = µ = 1.

in Fig 2a for a random channel realization, where the objective val-
ues are normalized to (0, 1). The maximum achievable symmetric
DoFs over local cache size µ and the number of antennas L = M
are shown in Figs 2b 2c averaged over 10 channel realizations at
each point. For wireless distributed system, whether the coded com-
munication scheme scales to large number of users is another main
concern as pointed in [3]. We consider the uniform placement case
when each mobile user stores µ files and each file is stored by µK/N
mobile users in Fig 2d. Numerical results demonstrate that the DCA
converges with much fewer iterations in the simulation setting, D-
CA greatly outperforms the IRLS-p algorithm and nuclear norm ap-
proach and achievable symmetric DoF nearly remains unchanged for
growing number of users with DCA. Although more requested mes-
sages are involved in the system when the number of users grows,
opportunities of collaboration for mobile users also increase since
each file is stored at more mobile users. However, it still remains an
open and future problem to prove the scalability theoretically.

5. CONCLUSION

In this paper we proposed a novel low-rank optimization approach to
improve the communication efficiency for wireless distributed com-
puting among devices. We focus on the data-shuffle phase of the dis-
tributed computing and establish a novel interference alignment con-
dition for data shuffling. To address the limitations for existing con-
vex relaxation based approaches, we presented a DC programming
based approach to solve the proposed low-rank optimization prob-
lem. Numerical results demonstrated that the proposed approach
outperforms state-of-art algorithms and the achievable DoF remains
constant despite the growing number of users in the network.
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