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ABSTRACT
Nonnegative matrix factorization (NMF), a dimensionality
reduction and factor analysis method, is a special case in
which factor matrices have low-rank nonnegative constraints.
Considering the stochastic learning in NMF, we specifically
address the multiplicative update (MU) rule, which is the
most popular, but which has slow convergence property.
This present paper introduces on the stochastic MU rule a
variance-reduced technique of stochastic gradient. Numerical
comparisons suggest that our proposed algorithms robustly
outperform state-of-the-art algorithms across different syn-
thetic and real-world datasets.

Index Terms— nonnegative matrix factorization, multi-
plicative update, stochastic gradient, variance reduction

1. INTRODUCTION

Superior performance of nonnegative matrix factorization
(NMF) has been achieved in many technical fields. NMF
approximates a nonnegative matrix V as a product of two
nonnegative matrices W and H. Given V ∈ RF×N

+ , NMF re-
quires factorization of the form V ≈WH, where W ∈ RF×K

+

and H ∈ RK×N
+ are nonnegative factor matrices. K is usu-

ally chosen such that K ≪ min{F,N}, that is, V is ap-
proximated in the two low-rank matrices. This problem is
formulated as a constrained minimization problem in terms
of the Euclidean distance as

min
W,H

1

2
∥V−WH∥2F =

1

N

N∑
n=1

1

2
∥vn −Whn∥22,

s.t. [W]f,k ≥ 0, [H]k,n ≥ 0, ∀f, n, k, (1)

where V = [v1, . . . ,vN ] and H = [h1, . . . ,hN ]. [A]i,j is
the (i, j)-th entry of A. The non-negativity of V enables us
to interpret the meanings of the obtained matrices W and H
well. This interpretation produces a broad range of applica-
tions in machine learning and signal processing such as text
mining, image processing, and data clustering, to name a few.
However, because problem (1) is a non-convex optimization
problem, finding its global minimum is NP-hard. For this
problem, Lee and Seung proposed a simple but effective cal-
culation algorithm [1] as

H← H⊙ WT V
WT WH

, W←W⊙ VHT

WHHT
, (2)

where⊙ (resp. ·
· ) denotes the component-wise product (resp.

division) of matrices, which finds a local optimal solution of
(1). This rule is designated as the multiplicative update (MU)
rule because a new estimate is represented as the product of a
current estimate and some factor. The global convergence to a
stationary point is guaranteed under slightly modified update
rules or constraints [2, 3]. Nevertheless, many efficient algo-
rithms have been developed because the MU rule is accom-
panied by slow convergence [4, 5, 6, 7]. Furthermore, con-
sidering big data, an online learning algorithm is preferred in
terms of the computational burden and the memory consump-
tion. Designating the former algorithms as batch-NMF, this
online-NMF has been investigated actively in several studies
[8, 9, 10, 11]. Its robust variant has also been assessed [12].
However, they still exhibit slow convergence. Stochastic gra-
dient descent (SGD) [13] has become the method of choice
for solving big data optimization problems. Although it is
beneficial because of the low and constant cost per iteration
independent of N , the convergence rate of SGD is also slower
than that of full GD even for the strongly convex case. For this
issue, various variance reduction (VR) approaches that have
been proposed recently have achieved superior convergence
rates in convex and non-convex functions.

This paper presents a proposal of a novel stochastic mul-
tiplicative update with the VR technique: SVRMU. The
paper also explains extension of SVRMU to the accelerated
variant (SVRMU-ACC), and the robust variant (R-SVRMU)
for outliers. The paper is organized as follows. Section
2 presents details of the variance reduction algorithm in
stochastic gradient. Section 3 presents the proposed stochas-
tic variance reduced multiplicative update (SVRMU). Section
4 provides a convergence analysis. Two extensions are de-
tailed in Section 5. In Section 6, exhaustive comparisons
suggest that our proposed SVRMU algorithms robustly out-
perform state-of-the-art algorithms across different synthetic
and real-world datasets. It is noteworthy that the discussion
presented here is applicable to other distance functions than
the Euclidean distance. The Matlab codes are available at
https://github.com/hiroyuki-kasai.
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2. VARIANCE REDUCTION ALGORITHM IN
STOCHASTIC GRADIENT

An algorithm designated to solve the problem (1) without
nonnegative constraints is begin eagerly sought in the ma-
chine learning field. When designating W and H as w,
and designating the rightmost inner term of the cost func-
tion (1) as fi(w), respectively, full gradient decent (GD)
with a stepsize η is the most straightforward approach as
wt+1 = wt − η∇f(wt), where ∇f(wt) corresponds to the
gradient gt. However, this is expensive especially when N
is extremely large. A popular and effective alternative is a
stochastic gradient by which gt is set to ∇fnt(wt) for nt-
th (nt ∈ [N ]) sample that is selected uniformly at random,
which is called stochastic gradient descent (SGD). It updates
wt as wt+1 = wt − η∇fnt

(wt), and assumes an unbiased
estimator of the full gradient as Ent

[∇fnt
(wt)] = ∇f(wt).

Apparently, the calculation cost per iteration is independent
of N . Mini-batch SGD uses gt = 1/|St|

∑
nt∈St

∇fnt(wt),
where St is the set of samples of size |St|. However, because
SGD requires a diminishing stepsize algorithm to guarantee
the convergence, SGD suffers from a slow convergence rate.

To accelerate this rate, the variance reduction (VR) tech-
niques [14, 15, 16, 17, 18, 19] explicitly or implicitly ex-
ploit a full gradient estimation to reduce the variance of noisy
stochastic gradient, leading to superior convergence proper-
ties. We can regard this approach as a hybrid algorithm of GD
and SGD. A representative research among them is Stochastic
Variance Reduced Gradient (SVRG) [20]. SVRG first keeps
w̃ = ws−1

t indexed by t = 0, · · · ,ms−1 at the end of (s−1)-
th epoch with ms−1 inner iterations. It also sets the initial
value of the inner loop in s-th epoch as ws

0 = w̃. Computing
a full gradient ∇f(w̃), it randomly selects ns

t ∈ [N ] for each
{t, s} ≥ 0, and computes a modified stochastic gradient gst as

gst = ∇fns
t
(ws

t )−∇fns
t
(w̃s) +∇f(w̃s). (3)

For smooth and strongly convex functions, this method enjoys
a linear convergence rate as SDCA, SAG and SAGA.

3. STOCHASTIC VARIANCE REDUCED
MULTIPLICATIVE UPDATE (SVRMU)

This section first describes the stochastic multiplicative
update, designated as SMU. Then it details the proposed
stochastic variance-reduced MU algorithm, i.e., SVRMU.
The problem setting is the following: we assume that nt-th
(nt ∈ [N ]) column of V, i.e. hnt

, is selected at t-th iteration
uniformly at random. hnt

and W are updated alternatively by
extending (2) as

hnt
← hnt

⊙ WTvnt

WT Whnt

, W←W⊙
vnt

hT
nt

Whnt
hT
nt

. (4)

Especially, the MU rule of W is regarded as a special case
of SGD with an adaptive stepsize of matrix form of St =

Algorithm 1 Stochastic variance reduction multiplicative up-
date (SVRMU)
Require: V, maximum inner iteration ms > 0.

1: Initialize W̃
0

and H̃
0
.

2: for s = 0, 1, . . . do
3: Calculate the components of the full gradient

W̃
s
H̃

s
(H̃

s
)T /N and V(H̃

s
)T /N .

4: Store Ws
0 = W̃

s
.

5: for t = 0, 1, . . . ,ms − 1 do
6: Choose k = ns

t ∈ [N ] uniformly at random.
7: Update hk = hk ⊙ ((Ws

t )
T
vk)/((Ws

t )
T Ws

thk).

8: Calculate Qs
t =Ws

thkh
T
k+vkh̃

T

k+W̃
s
H̃

s
(H̃

s
)T /N .

9: Calculate Ps
t = vkh

T
k+W̃

s
h̃
s

k(h̃
s

k)
T +V(H̃

s
)T /N .

10: Calculate the stepsize ratio αs
t .

11: Update Ws
t+1 = Ws

t − αs
tWs

t/Qs
t ⊙ (Qs

t − Ps
t ).

12: end for
13: Set W̃

s
= Ws

ms
and H̃

s
= H.

14: end for

αW/(Whnt
hT
nt
) ∈ RF×K

+ as

W←W− St ⊙ (Whnth
T
nt
− vnth

T
nt
),

where 0 < α ≤ 1 is the stepsize ratio that ensures that W and
H are nonnegative when those initial values are nonnegative.
The case of α = 1 produces (4) exactly.

According to this interpretation, we consider the VR al-
gorithm for SMU. Similarly as SVRG, SVRMU has a double
loop structure. By keeping W̃

s
= Ws

t and H̃
s
= H indexed

by t = 0, · · · ,ms − 1 at the end of (s-1)-th outer loop with
ms−1 inner iterations, and also by setting the initial value
of the inner loop in s-th outer loop as Ws

0 = W̃
s
, we com-

pute the components of the full gradient W̃
s
H̃

s
(H̃

s
)T /N and

V(H̃
s
)T /N . For each s ≥ 0 and t ≥ 0, we first randomly

select ns
t ∈ [N ] and update hns

t
as in (4). Hereinafter, k is

used instead of ns
t for notation simplicity. Then, we update

Ws
t with an appropriate stepsize Ss

t as shown below.

Ws
t+1

= Ws
t − Ss

t ⊙
[
(Ws

thkh
T
k − vkh

T
k )

− (W̃h̃
s

k(h̃
s

k)
T− vk(h̃

s

t )
T )+

W̃H̃
s
(H̃

s
)T−V(H̃

s
)T

N

]
= Ws

t − Ss
t ⊙

[(
Ws

thkh
T
k +vk(h̃

s

k)
T+

W̃H̃
s
(H̃

s
)T

N

)

−

(
vkh

T
k + W̃h̃

s

k(h̃
s

k)
T+

V(H̃
s
)T

N

)]
, (5)

where H̃
s
= [h̃

s

1, . . . , h̃
s

N ]. Here, we denote Qs
t ∈ RF×K

+ as

Qs
t = Ws

thkh
T
k + vk(h̃

s

t )
T +

W̃H̃
s
(H̃

s
)T

N
.
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We also denote Ps
t ∈ RF×K

+ as

Ps
t = vkh

T
k + W̃h̃

s

t (h̃
s

t )
T +

V(H̃
s
)T

N
.

When Ss
t = αs

tPs
t/Qs

t with the stepsize ratio αs
t , the update

rule in (5) is reformulated as presented below.

Ws
t+1 = Ws

t −
αWs

t

Qs
t

⊙ (Qs
t − Ps

t ). (6)

The overall algorithm is summarized in Algorithm 1. Addi-
tionally, the straightforward extension to the mini-batch vari-
ant of Algorithm 1 is defined as

Ws
t+1= Ws

t − Ss
t⊙
[(

Ws
thkh

T
k+vk(h̃

s

k)
T

b
+

W̃H̃
s
(H̃

s
)T

N

)

−

(
vkhk

T + W̃h̃
s

k(h̃
s

k)
T

b
+

V(H̃
s
)T

N

)]
,

where b (≤ N) is the mini-batch size. Qs
t and Ps

t in (6) are
modified accordingly.

4. CONVERGENCE ANALYSIS

The convergence analysis is similar to [21, 22], but is different
because of the update rule in (5). More specifically, denoting
the rightmost term in (1) as l(hn,W) := 1

2∥vn−Whn∥22, we
define the empirical cost fN (hn,W) = 1

N

∑N
n=1 l(hn,W).

We also define f̂N (W) := 1
N

∑N
n=1 l(ĥn,W), where ĥn

is already calculated during the previous steps. We now
consider the expected cost f(hn,W) := Ev [l(hn,W)] =
limN→∞ fN (hn,W), where the expectation is taken with
respect to the distribution P (v) of the samples. Our in-
terest is usually in the minimization of this expected cost
f(hn,W) almost surely (a.s.) instead of the empirical cost
fN (hn,W). To this end, the convergence analysis first shows
that fN (hn,W) − f̂N (W) converge a.s. to zero, where
f̂N (W) acts as a surrogate function for fN (hn,W). For
this proof, we show that f̂N (W) converges a.s. under the
modified update rule in (5). Here, the stepsize ratio αs

t plays
a crucial role in generating a diminishing sequence of Ss

t to
guarantee its convergence. After showing the convergence of
fN (hn,W), we finally obtain below;

Theorem 4.1. Assume that {v}∞n=1 are i.i.d. random pro-
cesses, and bounded. Iterates of Ws

t for 0 ≤ t ≤ ms − 1 and
0 ≤ s are compact. The initial W̃

0
is nonnegative and has

a full column rank. f̂N (W) is positive definite and strictly
convex. αs

t generates a diminishing stepsize of Ss
t . Then,

the iterates Ws
t produced by Algorithm 1 asymptotically co-

incide with the stationary points of the minimization problem
of f(hn,W).

5. EXTENSIONS OF SVRMU

This section proposes two variants of SVRMU.

5.1. Accelerated SVRMU (SVRMU-ACC)

Close examination of the update rule of hk and Ws
t reveals

that, whereas the latter requires 3FK + 2FN because of the
dominant calculation of the component-wise product of Ws

t

at the last step, the former requires only 3FK+2K, which is
much lower than that of the latter because of K ≪ {F,N}.
Therefore, we can repeat the calculation of hk several times,
which corresponds to Step 7 in Algorithm 1, before the com-
putation of Ws

t . Although a similar strategy is also proposed
for the batch-based MU [6], the proposed one differs because
of the different update rule. The noteworthy point is the stop-
ping criteria, which are (i) the maximum iteration number L,
and (ii) the dynamic stop criteria. The former specifically ex-
amines the ratio of the calculation complexity between Ws

t

and hk. We calculate L = max{⌊β 3FK+2FN
3FK+2K ⌋, 1}, where

0 ≤ β ≤ 1. Regarding the dynamic stop criteria, the process
stops when the change between l-th h

(l)
k and (l−1)-th h

(l−1)
k

falls below the predefined ratio ϵ of the difference from the
initial value h

(0)
k . The algorithm is presented as Algorithm 2.

Algorithm 2 Repetitive calculation algorithm of hk.

Require: hk, (Ws
t )

Tvk, (Ws
t )

T Ws
t and the ratio ϵ.

1: Set h(0)
k = hk.

2: for l = 1, 2, . . . , L do
3: Calculate hk = hk ⊙ (Ws

t )
T
vk/((Ws

t )
T Ws

thk).
4: if ∥h(l)

k − h
(l−1)
k ∥F < ϵ∥h(l)

k − h
(0)
k ∥F then

5: break.
6: end if
7: end for
8: Return hk = h

(l)
k .

5.2. Robust SVRMU (R-SVRMU)

The outlier in V causes remarkable degradation of the ap-
proximation of V. To address this issue, the robust batch-
NMF [23] and the robust online-NMF [12] have been pro-
posed. This extension also tackles the same problem within
the SVRMU framework. Given the outlier matrix R =
[r1, . . . , rN ] ∈ RF×N

+ , the robust variant seeks V ≈WH+R,
of which minimization problem is formulated as

min
W,H,R

1

N

N∑
n=1

1

2
∥vn −Whn − rn∥22 + λ∥rn∥1,

s.t. [W]f,k ≥ 0, hn ≥ 0, rn ≥ 0, ∀f, n, k,
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where λ > 0 is the regularization parameter, and ∥ · ∥1 is the
ℓ1-norm. For this problem, the update rule (5) is redefined as

Ws
t+1 = Ws

k − Ss
t ⊙

[(
(Ws

thk + rk)h
T
k + vk(h̃

s

k)
T

+
(W̃

s
H̃

s
+ R̃

s
)(H̃

s
)T

N

)

−

(
vkh

T
k + (W̃h̃

s

k + r̃sk)(h̃
s

k)
T +

V(H̃
s
)T

N

)]
.

Accordingly, we respectively calculate as

hk ← hk ⊙
(Ws

t )
Tvk

(Ws
t )

T Ws
thk + (Ws

t )
Trt

rk ← rk ⊙
vk

Ws
thk + rk +ΛF×1

.

6. NUMERICAL EXPERIMENTS

This section demonstrates the effectiveness of SVRMU by
comparing with the state-of-the-art online algorithms for
NMF. We implemented all of the algorithms in Matlab1.

6.1. Convergence behavior under clear synthetic data

The element [Wo]f,n of the ground-truth Wo ∈ RF×Ko
+ is

generated from a Gaussian distribution with a mean of zero
and variance 1/

√
Ko for any (f, n), where Ko is the ground-

truth rank dimension. Similarly, we generate Ho ∈ RKo×N
+ .

Then, the clean data Vo are created as Vo = PṼ(WoVo),
where V = [0, 1]F×N , and where PṼ is the normalization
projector [12]. We set (F,N,Ko, b) = (300, 1000, 10, 100).
The maximum epoch is 500. The following methods are used
for comparison: incremental MU (INMF) [8], online MU
(ONMF) [12], and ASAG-MU [24]. Our proposed algorithms
include SMU and SVRMU in Section 3, and those acceler-
ated variants, i.e., SMU-ACC and SVRMU-ACC, in Section
5.1. Figure 1 presents results of the convergence behavior in
terms of the optimality gap, which is calculated using HALS
[5] in advance. The figure shows the superior performance of
SVRMU in terms of the number of gradients and the time.

6.2. Base representation of face image with outlier

We use the CBCL face dataset2, which has 2429 gray-scale
images of size 19× 19. The maximum level of the pixel val-
ues is set to 50. All pixel values are normalized. We also
randomly add entry-wise nonnegative outliers with density
ρ = 0.9. All outliers are drawn from the i.i.d. from a uni-
form distribution U [30, 50]. Ko is fixed to 49. The methods of

1https://github.com/hiroyuki-kasai
2http://cbcl.mit.edu/cbcl/software-datasets/

FaceData2.html
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Fig. 1. Convergence behavior on synthetic dataset.
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(c) R-ONMF (d) R-SVRMU (proposed)

Fig. 2. Basis representations on the CBCL dataset.

comparison include ONMF and its robust variant: R-ONMF
[12], and the accelerated variant of R-SVRMU. The batch-
based variant of R-ONMF (R-NMF) is also evaluated. Figure
2 presents an illustration of the generated 14 basis represen-
tations, where it is apparent that R-SVRMU produces better
bases than R-ONMF, and gives similar bases as the batch-
based R-NMF.

7. CONCLUSIONS

This present paper has proposed a novel stochastic multi-
plicative update with variance reduction technique: SVRMU.
Numerical comparisons suggest that SVRMU robustly out-
performs state-of-the-art algorithms across different synthetic
and real-world datasets.
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