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ABSTRACT

Networks of interacting Hawkes processes have emerged as
useful models in neuroscience, geophysics, high frequency
finance, and social network analysis. The Hawkes process
is of fundamental importance, being a point process analog
of an autoregression. Here we develop a fixed gain adap-
tive (aka online) distributed estimator for the parameters of a
Hawkes process model. The stochastic intensity is modeled
by a causal Laguerre basis expansion. The natural recursive
structure of this basis is exploited to derive a new two time
scale adaptive algorithm based on exponentially weighted
least squares which preserves non-negativity constraints.
Simulations illustrate the results.

Index Terms— Hawkes process, adaptive algorithm,
NMF, distributed algorithm.

1. INTRODUCTION

Network Hawkes processes [15], [16], have found application
in neural coding, high frequency finance [20], social network
analysis [43], bioinformatics [2] and many other areas. Their
utility is due to their mutually exciting structure: the occur-
rence of past points influences the probability of occurrence
of future points via an impulse response function (which we
call the Hawkes impulse response (HIR). In the language of
point processes, the stochastic intensity is history dependent.
We refer the reader to classical references [8], [19], [33].

There is a growing literature on estimation for Hawkes
processes. Early approaches were based on maximum likeli-
hood (MLE); see e.g. [27]. Expectation-Maximization (EM)
methods followed, first in [7], while an alternative EM algo-
rithm exploiting the cluster process structure [17] was given
in [37] and subsequently extended in various directions [18],
[32]. Recently, another EM-type algorithm incorporating
group sparsity has been developed [40]. Bayesian approaches
are given in [23], [31]. A popular nonparametric approach is
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the MMEL algorithm which solves an Euler-Lagrange equa-
tion for the exciting kernels [42]. Another line of attack is
via approximation with time series models [11], [20]. Mean
field approximations are used in [1], while explicit sparsity
penalized algorithms are proposed for different aims in e.g.
[14], [28], [30],[40], [42], [43].

Despite this, most existing algorithms are not suitable for
online (aka adaptive) applications with streaming data and
time varying parameters. The small literature on point process
adaptive filtering, mostly from the neuroscience community,
includes likelihood steepest descent, Kalman filter, recursive
least squares (RLS) and sequential Monte-Carlo algorithms;
see e.g. [10], [35], [38]. However, there are two main com-
plications when it comes to the Hawkes process.

First, there are non negativity and stability constraints that
must be obeyed. A simple approach to manage these issues is
to use projections [13] but this can lead to slow convergence
and even stalling.

In the traditional (non-point process) setting, constrained
adaptive filtering without projections is a long studied, chal-
lenging problem [34]. Recently, an RLS dichotomous coor-
dinate descent algorithm which incorporates box and norm
constraints was proposed in [25], while [6] gives variants
of non-negative least mean squares (LMS); see also [5] and
references therein. Online non-negative matrix factorization
(NMF) has also been studied [3], [4], [24], [39], [41].

Second, the memory in the Hawkes process results in two
time scale behavior which must be addressed. The slow scale
is the parameter adaptation; the fast scale is the underlying
system state which encapsulates the history dependence. In
[13], partly to minimize this problem, the authors make the
extremely stringent assumptions that: (i) each node has the
same HIR; (ii) the HIRs are first order.

We address all these issues by developing a novel two time
scale exponentially weighted least squares (EWLS) algorithm
which uses ideas from the online NMF literature [3]. We
model the HIR in a Laguerre basis, whose recursive structure
is exploited to complete our two time scale algorithm. The
new algorithm allows the HIRs to vary from node to node
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and can easily handle higher order models; so the stringent
assumptions of [13] are completely overcome.

2. HAWKES-LAGUERRE MODEL

Consider an d node network represented by a multivariate
Hawkes process whose vector counting process N (t) =

(N1 (t) , . . . , Nd (t))
T , where Nk (t) is a scalar counting pro-

cess corresponding to the number of events at node k in (0, t]
[15], [16]. The vector instantaneous firing rate is history
dependent1 and denoted by λ (t) = (λ1 (t) , . . . , λd (t))

T .
This is also called the vector stochastic intensity, and here we
operate under the standard assumptions, e.g. orderliness [8],
[19] (which would be better named, no-simultaneity). The
Hawkes-Laguerre model for the vector stochastic intensity is

λn(t) = cn + Σdk=1

∫ t

0

gnk(t− u)dNk(u)

being thus made up contributions from every other node. The
Laguerre expansion for the HIR gnk(v) [36], [29], [30] is

gnk(v) = Σpl=1αn,k,lφl(v)

φl(v) = βe−βv
(βv)

`−1

(`− 1)!

where β is a user chosen inverse time constant 2. Note the
scaling which ensures

∫∞
0
φl(v)dv = 1. Substituting all this

in gives the following expression for the stochastic intensity.

λn (t) = cn +

d∑
k=1

p∑
`=1

αn,k,`xk,` (t)

xk,` (t) =

∫ t

0

φ` (t− u) dNk (u)

A critical new observation is that the recursive structure of
the Laguerre basis allows one to derive natural adaptive algo-
rithms for the Hawkes process; see appendix A.

3. FIXED GAIN NON-NEGATIVE EWLS

3.1. Least Squares Origin

In the Hawkes-Laguerre setting, the least squares formula-
tion is studied in e.g. [29], [30]. Consider node k. Obser-
vations at node k at time ti = i∆ are denoted by yk,i =
1
∆ (Nk (ti) −Nk (ti−1)). Next, we define vectors

θTk = [ck, α
T
k,1, . . . , α

T
k,d]

αTk,j = [αk,j,1, . . . , αk,j,p]

wTi = [1, xT1 (ti−1) , . . . , xTd (ti−1)]

xTk (ti−1) = [xk,1 (ti−1) , . . . , xk,p (ti−1)].

1The history is formally Ht = σ ({Ns, 0 ≤ s ≤ t}), and we omit the
notation to reduce clutter.

2For simplicity we have taken β and p to be independent of n and k, the
algorithm we derive applies with trivial modifications in the general case.

Note that λi (θk) = wTi θk, and that yk,i − λi (θk) is approxi-
mately a martingale difference “noise”. We restrict the entries
of θ to be nonnegative (written θ ≥ 0) to ensure a nonnegative
stochastic intensity estimate, and no inhibitory behavior. We
thus consider the nonnegative least squares problem for node
k at (discrete) time t:

arg. min
θk≥0

Jk,t (θk) :=
1

2

t∑
i=1

(
yk,i − wTi θk

)2
.

By vectorizing, the multiplicative update NMF algorithm [22]
can be used here. To write the update, we introduce

W (t) =

 wT
1

...
wT

t

 .
Starting from the initial guess θk,0, it updates its ath compo-
nent by

(θk,1)a = (θk,0)a

∑t
i=1

(
W (t)

)
i,a
yk,i∑t

i=1

(
W (t)

)
i,a

(
W (t)θk,0

)
i

= (θk,0)a

∑t
i=1 (wi)a yk,i∑t

i=1 (wi)a w
T
i θk,0

= (θk,0)a

∑t
i=1 (wi)a yk,i((∑t
i=1 wiw

T
i

)
θk,0

)
a

This is iterated to arrive at a minimizer of Jk,t. However,
in the online setting we have a sequence of cost functions
Jk,1, Jk,2, . . . etc. At each time, t, we could run the above
NMF algorithm to convergence but this is not an online so-
lution. Instead, at time t we take a single step of the NMF
update corresponding to Jk,t.

(θk,t)a = (θk,t−1)a
(Sk,t)a

(Ptθt−1)a
(3.1)

Sk,t = Sk,t−1 + wtyk,t, Sk,0 = 0 (3.2)
Pt = Pt−1 + wtw

T
t , P0 = 0. (3.3)

3.2. EWLS Completion

Note that (3.1)-(3.3) gives no control over the learning rate.
We thus propose an EWLS version. Setting 0 < ρ < 1, and
ε > 0 small, we arrive at

(θk,t)a = max

(
(θk,t−1)a

(Sk,t)a
(Ptθk,t−1)a

, ε

)
(3.4)

Pt = ρPt−1 + (1 − ρ)wtw
T
t , P0 = 0 (3.5)

Sk,t = ρSk,t−1 + (1 − ρ)wtyk,t, S0 = 0 (3.6)

wt is updated via (5.1)-(5.2) from appendix A; from there it
also follows thatwj is uniformly bounded when β∆ < 1. The
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use of max in (3.4) is crucial, otherwise a parameter which
hits 0 would always remain 0, i.e. one would lose adaptiv-
ity. It also improves robustness to initial transients, since a
component of θ may be inadvertently attracted toward 0.

3.3. Initialization

The initialization of (3.4) is subtle. Note that (Sk,t)a = 0
(a = 2, . . . , dp + 1) until the second point is observed. So,
(3.4) is not useful the second point occurs at node k. It is
thus best to wait until every node has at least 2 points before
employing (3.4), though we run (3.5)-(3.6) from time 0.

3.4. Equilibrium Points and Behavior

Rewriting the updates (3.5)-(3.6) as follows yields valuable
insight into the algorithm,

(Ptθk,t−1)a = (1 − ρ)

t∑
j=1

ρt−j (wj)a λj (θk,t−1)

(Sk,t)a = (1 − ρ)

t∑
j=1

ρt−j (wj)a yk,j

where λj (θk,t−1) = wTj θk,t−1. Suppose that the true un-
derlying parameters are constant, say θ∗k ≥ ε. Note that if
θk,t−1 = θ∗k then since λj (θ∗k) ≈ yk,j + o (∆) (definition
of stochastic intensity), and since wj is uniformly bounded,
one would expect θk,t ≈ θk,t−1 = θ∗k for infinitesimal ∆.
We thus conjecture that the true solution is in some sense an
equilibrium point of (3.4)-(3.6).

Also, note that when the memory parameters are small i.e.
(θk,t−1)2:dp+1 = ε, the update is approximately (for small ε)

(θk,t)1 =
(Sk,t)1

1 − ρt

which is a scaled (non-negative) LMS algorithm for a Poisson
process with gain µ = 1 − ρ; see appendix B.

4. SIMULATIONS

We simulated multivariate Hawkes processes using a thinning
algorithm [26] which combines a modified3 version of his al-
gorithm 2 with his algorithm 1. The simulations are veri-
fied using the procedure in [12]. The parameters are shown
in Figure 1. We chose m = 10000 (number of time con-
stants of data), β = 15 (inverse time constant), B = 2000
(number of bins per time constant of data), ` = 100 (number
of correlation lengths per window), L = 1

β(1−αmax) = 6.66

(maximum correlation length considered, αmax = 0.99), γ =
1
`L = 1.510−4 (time constant associated with window) and
ε = 0.0001. These quantities imply, T = m

β = 666.66 (total

3Corrections are required in steps 2, 7 and 8 of algorithm 2 in [26].

simulation interval in seconds), ∆ = 1
βB = 3.3310−5 (bin

size in seconds), ρ = 1 − γ∆.
Figures 2 and 3 show the parameter estimates for node 1

and 4 respectively.

Fig. 1. d=4 node network Hawkes process: p = 1; all self
HIR parameters = 0.75; all background rates =1; inter-nodal
HIR parameters as shown.
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Fig. 2. Node 1 parameter estimates settling to steady state
fluctuations near the true values.

5. CONCLUSION

We have proposed an adaptive algorithm for network Hawkes
processes, where the HIRs are expanded in terms of Laguerre
bases. The algorithm enforces non negativity constraints, and
easily manages the two time scale structure of the underlying
process by using the recursive nature of the Laguerre bases.
Simulations showed the efficacy of the algorithm in a small
network setting. Extensions enforcing the stability constraint
and employing sparsity will be pursued elsewhere as will be
the challenging task of algorithm stability analysis.
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Fig. 3. Node 4 parameter estimates settling to steady state
fluctuations near the true values.

A: Online Computation of xk,`
One can proceed by formulating a state space model as in
[36], but a more efficient route is via the following lemma.

Lemma 1. If f (t) =
∫ t

0
g (t− u) dNu then

df

dt
= g (0)

dN

dt
+

∫ t

0

∂g (t− u)

∂t
dNu.

Proof. Follows from Leibniz’s rule.
We now apply the lemma.
(1) xk,1 (t). Here g (u) = βe−βu thus

g (0) = β and
∂g

∂u
= −βg (u)

dxk,1 (t)

dt
= β

dNk
dt

− βxk,1 (t) .

(2) xk,2 (t). Here g (u) = β2ue−βu and so

g (0) = 0,
dg

du
= β

(
βe−βu

)
− β2

(
βue−βu

)
.

This yields∫ t

0

∂

∂t
g (t− u) dNk (u) = β

∫ t

0

βe−β(t−u)dNk (u)

− β2

∫ t

0

β (t− u) e−β(t−u)dNk (u) .

Putting this together,

dxk,2 (t)

dt
= βxk,1 (t) − βxk,2 (t) .

(3) xk,` (t) , ` ≥ 2.
Following the same line of argument we find

dxk,` (t)

dt
= βxk,`−1 (t) − βxk,` (t) ,

which is then discretized using backward Euler as

xk,1 (ti) ≈ (1 − β∆)xk,1 (ti−1)

+ β (Nk (ti) −Nk (ti−1)) (5.1)
xk,` (ti) ≈ (1 − β∆)xk,` (ti−1)

+ β∆xk,`−1 (ti−1) , ` ≥ 2. (5.2)

B: Steepest Descent - Poisson Case
In the single node Poisson case with rate λ∗, we define

J (λ) :=
1

2
E [yt − λ]

2

and note by stationarity,

E [Yt] = λ∗ = arg.min
λ≥0

J (λ) .

To get an LMS-type steepest descent algorithm, let 0 < ρ <
1, note dJ

dλ = λ− E [yt] and replace E [yt] with yt:

λt = λt−1 − (1 − ρ)
∂J

∂λ
(λt−1)

≈ λt−1 − (1 − ρ) (λt−1 − yt−1)

= ρλt−1 + (1 − ρ) yt−1.

This is exactly the (Sk,t)1 update (3.6) if we set λ0 = 0.
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