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ABSTRACT

We consider the problem of sampling signals defined on the nodes
of a graph. This problem arises in many contexts where the data
is not structured and needs to be reconstructed from a few samples.
While other graph signal sampling techniques have been recently de-
veloped in the literature, these are based on graph spectral concepts.
In contrast, here we develop a method that incorporates distances be-
tween graph vertices, and thus can provide additional insights about
desirable properties of sampling sets relative to state-of-the-art tech-
niques. We compare the accuracy of our method with two other fast
methods in the literature and show that it achieves similar perfor-
mance.

Index Terms— Graphs, sampling, bandwidth, coherence, dis-
tance

1. INTRODUCTION

Graphs with data associated to their nodes (graph signals) and edge
weights given by similarities between two data elements are a conve-
nient way to represent and analyze data with irregular relationships
between data points [1]. Graphs are useful in a variety of different
scenarios such as characterizing the Web [2], semi-supervised learn-
ing [3], community detection [4], or traffic analysis [5].

Similar to traditional signal processing, we may want to estimate
a graph signal, based on observations on a few nodes of the graph,
leading to the problem of sampling graph signals [6, 7]. For this we
need to choose a set of vertices, S, called the sampling set, on which
we observe the signal values in order to predict the signal values over
the other vertices (set Sc). In the presence of noise some sampling
sets give better reconstruction than others and the goal of sampling
set selection is to find the best such sampling set.

Most techniques developed to date for sampling set selection
[6, 7] are based on spectral criteria, which require computing multi-
ple eigenvectors of a Laplacian or adjacency matrix. These methods
have been shown to be superior to random sampling, in the pres-
ence of noise or model mismatches, but they have the disadvantage
of not providing insights about how local vertex connectivity affects
node selection. Moreover, deploying these algorithms for large scale
graphs or in a distributed manner may be challenging due to the
eigendecompositions required.

As an alternative, in this paper we propose a vertex-domain
sampling approach inspired by an interpretation of spectral proxy
method of [7] in terms of vertex distances. This leads to a sam-
pling set selection algorithm where nodes are selected based on
their relative distances. We also provide an interpretation of the link
between a sampling set that minimizes the reconstruction error and
the corresponding distance properties between samples S and Sc.

2. NOTATION AND SETUP

A graph is defined as the pair (V, E), where V is the set of nodes or
vertices and E is the set of edges [8]. The set of edges is a subset
of the set of unordered pairs of elements of V . The graph signal is a
real-valued function defined on the vertices of the graph f : V → R.

We index the vertices v ∈ V with the set {1, · · · , N} and de-
fine wij as the weight of the edge between i and j. The adjacency
matrix of the graph A has elements Aij = wij and Aii = 0. The
degree matrix D of a graph is a diagonal matrix having the elements
Dii =

∑
j wij along the diagonal. The combinatorial Laplacian for

the graph is given by L = D −A. When the nonzero weights wij
are all 1 we call the graph unweighted and the graph is weighted oth-
erwise. We assume that there are no self loops and the edge weights
are positive. The eigendecomposition of the Laplacian matrix is
L = UΣUT since the Laplacian matrix is symmetric and posi-
tive semidefinite. Σ = diag(λ1, · · · , λN ), with λ1 ≤ · · · ≤ λN
representing the frequencies, while the column vectors of U provide
a frequency representation for graph signals, so that U is usually
called the graph Fourier transform (GFT). The larger the eigenvalue
λi corresponding to the eigenvector ui of L the higher frequency it
represents [1]. The sample set S is defined as a subset of V where
the values of f are known. The problem we consider here is that of
finding the set S such that when we interpolate the values of f on
Sc from measurements on S the interpolation error is minimum. We
will often work with sub-matrices of U with different frequency or
vertex localization. LettingR be the set {1, · · · , r}, where r = |R|,
the matrix constructed by selecting first r columns of U will be de-
noted by UVR or simply UR and the matrix constructed by further
selecting rows of UR indexed by S will be written as USR.

3. MOTIVATION

For the signal to be determined by a finite number of samples we
require the signal to be bandlimited or approximately bandlimited,
i.e., all or most of the energy of the signal is contained in the first r
columns of U and thus f ≈ URa for some R and a. In this case,
selection of the best sampling set is related to choosing the sampling
set S that maximizes the minimum singular value of the matrix USR
[6, 7]. Maximizing the minimum nonzero singular value of the sub-
matrix of a matrix is a subset selection problem known to be NP-
hard [9]. Thus, most graph signal sampling literature uses greedy
techniques [6, 10, 11] after computing U. Other recent research
[12, 13] considers the problem of minimizing a scalar function of
the error covariance matrix and solve a relaxed version of the opti-
mization problem, but even these need the information of the eigen-
vector matrix U . However computing U itself involves computing
the eigenvalue decomposition of L and so has O(N3) complexity.
As alternatives, a number of sampling approaches [7, 14, 15] do not
require explicit computation of U as a starting point, using instead
local estimates of frequency [7] or random sampling [16, 15].
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As an intuition for our work we note that because signals being
sampled are smooth (low frequency), selecting a sampling set with
nodes that are close to each other in the graph is unlikely to be an
efficient strategy. Instead a set selection that chooses nodes that are
further apart is likely to lead to more robust sampling. This intuition
can be justified more formally by considering the lowest singular
value of USR and its relation with distances between nodes in S.
We are interested in maximizing the lowest non-zero singular value
σmin of the matrix USR. Note first that for any nonzero singular
value of USR we have:

σi(USR) =
√
λi(USRUT

SR)

=
√
λi(USRUT

RURUT
SR)

= σi(URUT
SR), (1)

where the first and the last equality follow for any matrix A because
the non-zero singular values of A are square roots of the non-zero
eigenvalues of AAT [17]. The matrix UT

RUR is the identity matrix
IR, and URUT

SR can be written as:

URUT
SR = URUT

RIS (2)

whose columns are the low pass filtered versions of signals δv (on r
lowest eigenvectors) where v ∈ S and IS is the selection of columns
of the identity matrix corresponding to the sampling set S. A large
σmin(USRUT

R) occurs when then the columns of the matrix are
close to orthogonal and their magnitudes are high. A typical column
URUT

Rδv is the translation [18] of the low pass kernel at the vertex
v:

URUT
Rδv =

r∑
l=1

ul(v)ul =

N∑
l=1

δ̃v(l)g̃(λl)ul (3)

where ĝ(λl) = 1, λl ≤ λr and 0 otherwise. Since the columns
are the low pass kernel translated to the vertices in S, each column
decays as a function of the hop distance (Theorem 1, [18]). The
relation between translated kernels and decay as a function of dis-
tance has also been discussed in [19]. Note that because translations
of the low pass kernel affect the reconstruction accuracy directly by
appearing as columns in (2) we should be able to improve accuracy
beyond what would be achievable with random sampling by consid-
ering distances between the sampled vertices.

To start with, having close to orthogonal columns of URUT
SR

leads to a larger lowest singular value of USR, which based on (3)
can be achieved by selecting vertices v (to include in S) that are
as far away from each other as possible, so that their corresponding
columns in URUT

SR have small magnitudes of mutual inner prod-
ucts. This suggests that distance between nodes can be used as part
of a graph signal sampling strategy. We next analyze the algorithm
in [7] to interpret it from the perspective of distances between nodes.
This will allow us to define a greedy set selection algorithm based on
distances that does not require explicit eigendecomposition. This al-
gorithm will combine elements of deterministic approach compared
to random sampling and which does not require the eigenpair com-
putations as in [7].

4. CUTOFF FREQUENCY MINIMIZATION AND
DISTANCES

The paper [7] starts off by defining a uniqueness set S for a fre-
quency ω if all signals with frequency less than ω can be uniquely re-
constructed by knowing their values on S. The cutoff frequency S is

defined as the minimum bandwidth of a signal which is zero over the
set S. Any set S is considered better with respect to sampling if it’s
cutoff frequency is more. The premise of the algorithm is maximiz-
ing the cutoff frequency of sets by greedily selecting next vertices.
However since the cutoff frequency estimation requires the knowl-
edge of eigendecomposition of L, the paper instead uses a parameter
k which can be increased to get a better approximation of the cutoff
frequency. Since we are interested in studying the behavior of the
algorithm we take the perfect case of k going to infinity(k → ∞).
The smoothest signal on Sc is then simply computed by using U as
follows.

Consider a set S with s samples and assume it is a uniqueness
set, so that columns of USR are independent for r ≤ s. Assuming
that the s+ 1-th column vector of U, us+1 column vector is not all
zero over S, then USR, with r = s+1 columns will be a dependent
set of columns. Thus a minimum bandwidth signal on L2(Sc) can
be given as some linear combination of the first s + 1 columns of
U. The lowest bandwidth signal h with all zeros on S is given as
follows.

h = URα, USRα = 0 (4)

The second equation above determines the coefficients α using the
condition that the signal is zero over S.

We are interested in finding the vertex v that maximizes |h(v)|.
Let dv = URUT

Rδv denote the low pass filtered delta signal at
vertex v. Then,

h(v) = δTv h = δTv URα = δTv URUT
RURα

= (δTv URUT
R)(URα) = 〈dv,h〉 (5)

So |h(v)| is maximized when |〈dv,h〉| is maximized. Now since
h(v) = 0 for v ∈ S, given (5) dv, v ∈ S are perpendicular to h.

〈dv,h〉 = 0, v ∈ S (6)

We call the space spanned by those columns DS defined as DS =
{span(dv)|v ∈ S} From the equation (6), we know that h is
orthogonal to the subspace DS . Now we show that the subspace
span(DS ∪ h) is the space of bandlimited functions with band-
width r. From (1) we know that rank(URUT

SR) = rank(UT
SR).

Since S is a uniqueness set by construction, it has rank s. Thus
the columns dv, v ∈ S of URUT

SR are linearly independent.
From the orthogonality relation of (6) we have that the subspace
span(DS ∪ h) has dimension s + 1 = r and so any vector with
bandwidth of λr or less can be represented as their linear combi-
nation of du, u ∈ S and h. So we can write dv as the following
linear combination: dv =

∑
u∈S cudu + chh. and we have the

following decomposition of dv: dv = PDdv + 〈dv,h〉h, where
h has unit magnitude and PD is the projection matrix onto the
subspace DS (note that PD is a function of S but we do not make
this explicit in the notation for simplicity.) The energy of dv can
be given in terms of its projection on the two orthogonal subspaces:
‖dv‖2 = ‖PDdv‖2 + 〈dv,h〉2. The signal magnitude |h(v)| can
be maximized using (5).

arg max
v
〈dv,h〉2 = arg max

v
(‖dv‖2 − ‖PDdv‖2) (7)

Note that ‖dv‖2 is the squared local graph coherence [14]
∥∥UT
Rδv

∥∥2
of that vertex.

‖dv‖2 =
∥∥∥URUT

Rδv

∥∥∥2 =
∥∥∥UT
Rδv

∥∥∥2 (8)

To maximize the expression in (7) we would like to select nodes
that have i) large squared local graph coherence with respect to r
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frequencies (the first term in (7), which is a property of each node
and does not depend on S) and ii) small squared magnitude of pro-
jection onto the subspace DS (which does depend on S). In order
to understand this second goal, note that a smooth kernel translated
to a vertex v is expected to decay as a function of distance from v.
The subspace DS is a linear combination of smooth kernels trans-
lated to all vertices in S and therefore any signal in DS will have
a small magnitude at vertices “far away” from S. The signal dv is
also concentrated around v. Therefore a vertex v ∈ Sc whose dis-
tance to the vertices S is large is likely to lead to a small projection
‖PDdv‖2 and thus would tend to maximize (7). Our proposed algo-
rithm combines both conditions, by first identifying vertices that are
at a sufficiently large distance from already chosen vertices in S and
then selecting among those the one having largest value of ‖dv‖2.

More specifically, assume we have a set S of vertices selected
already. Then, the next vertex v∗ will be selected by first finding a set
of nodes that are sufficiently far from S, Vd(S) defined as follows

Vd(S) = {v ∈ Sc|d(S, v) > ∆.max
u

d(S, u)},

where ∆ is between 0 and 1, d(S, v) = minu∈S d(u, v) and d is the
geodesic distance on the graph. The distance between two adjacent
vertices i, j is given by d(i, j) = 1/w(i, j). Then, the second step
is to select the node with largest ‖dv‖2 in Vd(S):

v∗ = arg max
v∈Vd(S)

∥∥∥URUT
Rδv

∥∥∥2 .
The parameter ∆ is used to control how many nodes can be included
in Vd(S). With a ∆ small, more nodes will be considered, at the
cost of increased complexity.

5. IMPLEMENTATION

5.1. Signal Models and sampling

The graph toolboxes [20, 21] are used to construct the following
types of graphs having 1000 nodes.

KNN: Nodes are selected uniformly at random on a 2 dimen-
sional square patch. Each node is then connected with it’s 10-nearest
neighbours via an undirected edge weighted as e−d

2(i,j)/2 with
d(i, j) being the Euclidean distance between the pairs of points i
and j. Since we do this operation for each node, we may have nodes
with more than 10 neighbours.

Scale free graphs: A Barabási Albert model with 6 initial nodes
is chosen.

Community model: An unweighted graph with 10 communities
is constructed using the function gsp community(1000,10) in
the GSP toolbox [20].

Erdős Rényi model: In this model, the probability of selecting
an edge between two nodes is taken to be 0.01.

USPS dataset [22]: Graphs with 1000 vertices are constructed
by taking 100 samples from each class. 10 such graphs are con-
structed. Construction of the graphs follows the same procedure as
in [7]. Samples are chosen and reconstruction is done followed by
one vs all classification.

With a perfectly bandlimited signal most sampling schemes per-
form comparably in terms of reconstruction error. However, in prac-
tice signals are rarely perfectly bandlimited and noise-free. There-
fore it is necessary to compare the performance of the sampling
methods on non-ideal signals. We consider two models, the first
signal model we consider is bandlimited with additive noise and the

second one has energy outside expected bandwidth, similar to that in
[7].

Model 1: The signal x is bandlimited with added noise n. The
resulting signal is f = URx̃ + n with the frequency components
of x and noise being random variables distributed as multivariate
normal distributions: x̃ ∼ N (0, 0.02IR), n ∼ N (0, 5× 10−5IN ).

Model 2: The signal x is not bandlimited with a decaying out
of bandwidth spectrum. The resulting signal is f = Ux̃. x̃(i) =

x̃n(i)e−β(λi−λR)+/(λN−λ1) with x̃n ∼ N (0, 0.02IN ) and (λi −
λR)+ = max(λi − λR, 0). β is chosen as the numerical solution
of the equation

∑
i>Re

−2β(λi−λR)/(λN−λ1) = 2.5.
Note that in both the signal models the desirable signal has ex-

pected power 1 whereas the undesirable signal has power 0.05. The
reconstruction errors

∥∥∥f̂ − x
∥∥∥ and

∥∥∥f̂ − f
∥∥∥ representing the errors

in reconstruction with respect to the observed signal and the under-
lying bandlimited signal, respectively, where f̂ is the reconstructed
signal.

Acquiring samples of a signal usually has a cost associated to it
so the algorithms which provide better reconstruction with smaller
number of samples are preferable. We compare our method with
the methods in [14] and [7]. Let us call these methods Distance-
Coherence (DC), Random and Proxy respectively. DC and Proxy
both return unique samples but Random does weighted random sam-
pling with replacement. As a result the samples it returns are not
always unique. But in order to compare the sampling methods on a
fair footing we only care about the number of samples the method
returns, irrespective of whether they are unique or not.

5.2. Reconstruction

The sampled signal is given by fS and the nonzero frequencies of the
signal are given by f̃R = UT

Rf . For the purpose of reconstruction we
assume that we know the Graph Fourier basis and we can do the best
possible reconstruction given the samples. The solution is given by
the least squares solution to

∥∥∥USR f̃R − fS

∥∥∥
2
. pS denotes the sam-

pling probabilities corresponding as in Random. We define the ma-
trix P = diag(p(S)). For Random the reconstruction is given by its

standard decoder which minimizes
∥∥∥P−1/2(USR f̃R − fS)

∥∥∥
2
. For

both the minimization problems the ideal solutions are given by the
least squares solutions. However the matrices USR and P−1/2USR
might not have full column rank so we use Pseudo inverse to get
the solution. The solutions of Moore Penrose pseudo inverse and
minimum least squares coincide when the matrices in question have
full column rank. Additionally, pseudo inverse provides the mini-
mum norm solution in case of multiple solutions to the minimization
problem. So the reconstruction for the random samples is done by
f̂ = UR(P−1/2USR)†P−1/2fS whereas the reconstruction for the
other two methods is done as follows f̂ = URU†SRfS .

5.3. Details and Observations

Note the effect of ∆ on the next sample in DC. For a high value of
∆ we only consider vertices that are at the maximum distance from
S and choose the one with maximum local graph coherence. For a
low value of ∆ we consider most vertices in the graph so the next
vertex is selected mainly on the basis of local graph coherence, in
this case DC is similar to Random. We choose ∆ = 0.9. For eval-
uating the local graph coherences, we use the method in [14]. The
coherence in Random needsO(logN) random vectors to be filtered.
We use 20 log(N) random vectors, which is the same amount used
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Fig. 1: Figures 1a-1h plot log10(MSE) while figure 1i plots the average classification accuracy. All the plots are plotted against number of
samples taken.

[15]. The low pass filter for filtering the random vectors is approxi-
mated using a polynomial of order 30. 10 different instances of each
type of graph are used for computing the average squared error with
different signals for each instance.

In the experiments in Fig. 1 we can see that the random sampling
method has error power equal to the signal power at about two times
the number of samples as bandwidth and power equal to (1/10)th

the signal power at about four times the number of samples as the
bandwidth. The DC method performs significantly better compared
to Random and comparably to the Proxy method in all the graphs we
experimented with. Since the plot for the USPS data denotes classifi-
cation accuracy and not mean squared errors the difference between
the curves is expected to be less. The DC method was faster than the
Proxy method in all the experimented graphs. A more formal and

complete complexity analysis is part of our future work.

6. CONCLUSION

Most sampling schemes perform reasonably well when dealing with
perfectly bandlimited signal. However in the presence of noise or the
signal not being perfectly bandlimited, some schemes perform much
better. In the scenario that only a limited number of samples can
be chosen we want an algorithm to perform well without requiring
expensive operations. The method presented in this paper relies on
the intuition of smooth translated kernels and their decay to come up
with a vertex based sampling method which is an improvement over
the Weighted Random sampling method and providing performance
similar to Graph spectral proxies method.
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tonio Ortega, and Eric Fleury, “Grasp: A matlab toolbox for
graph signal processing,” in 42nd IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP
2017), 2017.

[22] “Usps handwritten digits,” https://cs.nyu.edu/

˜roweis/data.html.

6322


