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ABSTRACT

We characterize the sample size required for accurate graphical

model selection from non-stationary samples. The observed

samples are modeled as a zero-mean Gaussian random process

whose samples are uncorrelated but have different covariance

matrices. This includes the case where observations form

stationary or underspread processes. We derive a sufficient

condition on the required sample size by analyzing a simple

sparse neighborhood regression method.
Index Terms—sparsity, graphical model selection, neighbor-

hood regression, high-dimensional statistics.

1. INTRODUCTION

One of the most successful approaches to manage massive

high-speed datasets (big data) is based on graph or network

models [1], [2]. However, in many application domains the

network or graph structure has to be learned in a data-driven

fashion from training samples. Most existing methods for

graphical model selection (GMS) model the training samples

to be i.i.d. or samples of a stationary random process [3]–[6].

In contrast, we consider samples forming a non-stationary

uncorrelated process. This covers the case where the samples

form a stationary process or a locally stationary (underspread)

process, for which efficient decorrelation can be achieved by

discrete Fourier or local cosine transforms [7].

Our main conceptual contribution is the formulation of

a sparse neighborhood regression GMS method for high-

dimensional non-stationary processes. As our main analytical

contribution, we derive upper bounds on the sample size such

that accurate GMS is possible. In particular, our analysis

reveals that the crucial parameter determining the required

sample size is the minimum average partial correlation be-

tween the process components. If this quantity is not too small,

accurate GMS is feasible even in the high-dimensional regime,

where the system size might exceed (drastically) the number

of available training samples.

After formalizing the problem setup in Section 2, we

analyze a simple GMS method in Section 3. This analysis

results in upper bounds on the sample size required for GMS.

Notation: For a vector x = (x1, . . . , xd)
T , the Euclidean

and ∞-norm are ‖x‖2 :=
√
xTx and ‖x‖∞ := maxi |xi|,

respectively. The m-th largest eigenvalue of a positive semidef-

inite (psd) matrix C is λm(C). Given a matrix Q, we denote

its transpose, trace, rank, spectral norm and Frobenius norm

by QT , tr{Q}, rank{Q}, ‖Q‖2 and ‖Q‖F, respectively. For

a sequence of matrices Ql, we denote by blkdiag{Ql} the

block diagonal matrix with lth diagonal block Ql. The identity

matrix of size d× d is Id. The minimum (maximum) of two

numbers a and b is denoted a∧b (a∨b). The set of non-negative

real (integer) numbers is denoted R+ (Z+). The probability

of an event E is P{E}. The complement of some event A is

denoted Ac. The expectation of a random variable y is E{y}.

For a natural number n, we denote [n] = {1, . . . , n}.

2. PROBLEM FORMULATION

We consider observing N vector-valued samples {x[n]}Nn=1,

each sample x[n]∈R
p containing p scalars {xi[n]}i∈[p]. The

samples are modelled as realizations of zero-mean Gaussian

random vectors, which are uncorrelated, i.e., E{x[n]xT [n′]}=
0 for n 6=n′. Thus, the probability distribution of the observed

samples is fully specified by the covariance matrices C[n] :=
E{x[n]xT [n]}.

By contrast to the widely used i.i.d. assumption (where C[n]
is the same for all n), we allow the covariance matrix C[n]
to vary with sample index n. However, we impose a piece-

wise smoothness constraint on the variation of the covariance

matrix C[n] over sample index n. In particular, the covariance

matrix C[n] is constant over blocks of L consecutive vector

samples. Thus, our model for the samples is

x[1], . . . ,x[L]︸ ︷︷ ︸
i.i.d.∼N (0,C(b=1))

,x[L+ 1], . . . ,x[2L]︸ ︷︷ ︸
i.i.d.∼N (0,C(b=2))

, . . . , (1)

i.e., samples are independent zero-mean Gaussian vectors with

covariance

C[n]=C(b) for n ∈ {(b− 1)L+ 1, . . . , bL}. (2)

For ease of exposition and without essential loss of gener-

ality, we henceforth assume the sample size N to be a integer

multiple of the block length L, i.e., N = BL, with the number

B of data blocks. The model (1) reduces to the well-studied

i.i.d. setting for B = 1 and block length L = N . In this paper,

we study limits of accurate GMS using model (1) with B > 1.

Stationary Processes. The model (1) covers the case where

the observed samples form a stationary process [5], [6], [8].

Indeed, consider a zero-mean Gaussian stationary process z[n]
with auto-covariance function

Rz[m] := E{z[n]zT [n−m]} (3)

and spectral density matrix (SDM) [9]

Sz(θ) :=
∞∑

m=−∞

Rz[m] exp(−j2πθm). (4)

Let x[k] :=
∑N−1

n=0 z[n] exp(−j2πnk/N) denote the discrete

Fourier transform (DFT) of the stationary process z[n]. Then,

by well-known properties of the DFT [10], the vectors x[k],
for k = 0, . . . , N−1, are approximately uncorrelated Gaussian

random vectors with zero mean and covariance matrix C[k] ≈
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Fig. 1. The CIG of a vector process x[n] =
(x1[n], x1[n], x3[n])

T (cf. (1)).

Sz(k/N). Moreover, if the effective correlation width W of

the process z[n] is small, i.e., W ≪ N , the SDM Sz(θ) is

nearly constant over a frequency interval of length 1/W . Thus,

the DFT vectors x[k] approximately conform to the process

model (1) with block length L = N/W .

Underspread Processes. The process model (1) is also

useful for the important class of underspread non-stationary

processes [7]. A continuous-time random process z(t) is

called underspread if its expected ambiguity function (EAF)

Ā(τ, ν) :=
∫∞

t=−∞ E{z(t+ τ/2)zT (t− τ/2)} exp(−j2πtν)dt
is well concentrated around the origin in the (τ, ν) plane. In

particular, if the EAF of z(t) is supported on the rectangle

[−τ0/2, τ0/2]× [−ν0/2, ν0/2], then the process z(t) is under-

spread if τ0ν0 ≪ 1.

One of the most striking properties of an underspread

process is that its Wigner-Ville spectrum (which can be

loosely interpreted as a time-varying power spectral den-

sity) W (t, f) :=
∫
τ,ν

Ā(τ, ν) exp(−2π(fτ − νt))dτdν is

approximately constant over a rectangle of area 1/(τ0ν0).
Moreover, it can be shown that for a suitably chosen prototype

function g(t) (e.g., a Gaussian pulse) and grid constants

T and F , the Weyl-Heisenberg set {g(n,k)(t) := g(t −
nT )e−2πkFt}n,k∈Z [7], yields zero-mean expansion coeffi-

cients x[n, k] =
∫
t
z(t)g(n,k)(t)dt which are approximately

uncorrelated. Moreover, the covariance matrix of x[(n, k)] is

approximately W (nT, kF ). Thus, the vectors x[(n, k)] con-

form to the process model (1), with block length L≈ 1
TFτ0ν0

.

Conditional Independence Graph. We now define a graph-

ical model for the observed samples {x[n]}Nn=1 by identifying

the individual process components

xi = (xi[1], . . . , xi[N ])T (5)

with the nodes V = [p] of an undirected simple graph

G = (V, E) (cf. Fig. 1). This graph encodes conditional

independence relations between the components xi and is

hence called the conditional independence graph (CIG) of the

process x[n]. In particular, an edge is absent between nodes

i, j, i.e., {i, j} /∈ E , if the corresponding components xi

and xj are conditionally independent, given the remaining

components {xr}r∈V\{i,j}.

We highlight the fact that the CIG G represents stochastic

dependencies between components of x[n] globally for all n.

In particular, the edge set E does not depend on the sample

index n. Our setting is similar to the one of [11], which

considers samples grouped into different classes.

Since we model the process x[n] as Gaussian (cf. (1)), the

CIG structure can be read off conveniently from the inverse

covariance (precision) matrices K[n] := C[n]−1. In particular,

xi are xj are conditionally independent, given {xr}r∈V\{i,j},

if and only if Ki,j [n] = 0 for all n ∈ [N ] [10, Prop. 1.6.6].

Thus, we have the following characterization of the CIG G
associated with the process x[n]:

{i, j} /∈ E if and only if Ki,j [n] = 0 for all n. (6)

We highlight the coupling over samples in the CIG character-

ization (6): An edge is absent, i.e., {i, j} /∈ E , if and only if

the precision matrix entry Ki,j [n] is zero for all n ∈ [N ].

In order to measure the strength of a connection between

process components xi and xj for {i, j} ∈ E , we define the

average partial correlation

ρi,j := (1/N)
N∑

n=1

K2
i,j [n]/K

2
i,i[n]

(2)
= (1/B)

B∑

b=1

(
K

(b)
i,j

)2
/
(
K

(b)
i,i

)2
. (7)

By (6) and (7), {i, j} ∈ E if and only if ρi,j 6= 0. Note that

ρi,j is an average measure, i.e., even if the marginal partial

correlation is small for some n, ρi,j might still be large.

Accurate estimation of the CIG for finite sample size N
(incurring unavoidable sampling noise) is only possible for

sufficiently large partial correlations ρi,j for {i, j} ∈ E .

Assumption 1. There is a constant ρmin > 0 such that

ρi,j ≥ ρmin for any {i, j} ∈ E . (8)

Moreover, we assume the CIG underlying x[n] to be sparse

in the sense of each node having small neighborhood. In what

follows, we denote the neighbourhood and degree of node

i ∈ V by N (i) := {j ∈ V \ {i} : {i, j} ∈ E} and si = |N (i)|,
respectively.

Assumption 2. For some s<(p/3)∧(L/3),
si ≤ s, for any node i ∈ V. (9)

3. SPARSE NEIGHBORHOOD REGRESSION

The CIG G of the process x[n] in (1) is fully specified by the

neighborhoods, i.e., once we have found all neighborhoods,

we can reconstruct the full CIG. In what follows we focus

on the sub-problem of learning the neighborhood N (i) of an

arbitrary but fixed node i ∈ V .

In view of the process model (1), we denote for block b∈ [B]
the ith process component as

x
(b)
i :=

(
xi[(b− 1)L+ 1], . . . , xi[bL]

)T ∈ R
L.

By basic properties of multivariate normal distributions [12,

Thm. 3.5.1] and the fact that Ki,j [n] = 0 for j /∈ N (i), x
(b)
i

can be decomposed as

x
(b)
i =

∑

j∈N (i)

ajx
(b)
j + ε

(b)
i , (10)

with coefficients aj = −K
(b)
i,j /K

(b)
i,i . The error term ε

(b)
i ∼

N (0, (1/K
(b)
i,i )IL) is uncorrelated with x

(b)
j , for j ∈ N (i).
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Consider now an index set T ⊆ [p] with N (i) \ T 6= ∅.

Another application of [12, Thm. 3.5.1] to the component∑
j∈N (i) ajx

(b)
j yields

x
(b)
i =

∑

j∈T

cjx
(b)
j + x̃

(b)
i + ε

(b)
i , (11)

with the vectors x̃
(b)
i , {x(b)

j }j∈T and ε
(b)
i being jointly Gaus-

sian. The vector x̃
(b)
i is uncorrelated with {x(b)

j }j∈T , ε
(b)
i and

distributed as

x̃
(b)
i ∼N (0, σ̃2

b IL). (12)

The variance σ̃2
b of x̃

(b)
i is obtained as

σ̃2
b = aT K̃−1a (13)

with K̃ =
((
C

(b)
N (i)∪T

)−1)
N (i)\T

and vector a ∈ R
|N (i)\T |

whose entries are given by {aj = −K
(b)
i,j /K

(b)
i,i }j∈N (i)\T .

The decompositions (10) and (11) naturally suggest a simple

strategy for estimating (selecting) the neighborhood N (i).

Let P
(b)
T be the orthogonal projection on the complement of

span{x(b)
j }j∈T ⊆ R

L. According to (10), for any index set T
with N (i) \ T = ∅,

‖P(b)
T x

(b)
i ‖22 = ‖P(b)

T ε
(b)
i ‖22 for all b ∈ [B], (14)

while for any index set T with N (i) \ T 6= ∅, (11) entails

‖P(b)
T x

(b)
i ‖22 = ‖P(b)

T (x̃
(b)
i + ε

(b)
i )‖22 for all b ∈ [B], (15)

with non-zero x̃
(b)
i . Some of our efforts go into showing that

‖P(b)
T (x̃

(b)
i + ε

(b)
i )‖22 ≈ ‖P(b)

T x̃
(b)
i ‖22 + ‖P(b)

T ε
(b)
i ‖22, (16)

for all blocks b ∈ [B]. Thus, if the component x̃
(b)
i in (11) is

not too small, the estimator

N̂ (i) :=arg min
|T |≤s

(1/N)
B∑

b=1

‖P(b)
T x

(b)
i ‖22 + λ|T |, (17)

will deliver the true neighbourhood, i.e., N (i) = N̂ (i) with

high probability. Note that the penalty term λ|T | in (17) is

required to cope with the case of the degree of node i being

smaller than s, i.e., with the case |N (i)| < s.

The estimator (17) performs sparse neighborhood regres-

sion by approximating the ith component xi (cf. (5)) in a

sparse manner (by allowing s active components) using the

remaining process components. We highlight that the estimator

(17) is only useful for deriving achievability results since it

allows for a simple performance analysis. However, a naive

implementation of (17) would be intractable since it involves

a combinatorial search over all subsets of size at most s. A

tractable convex optimization method for learning the CIG for

the process model (1) has been presented in [11].

For the analysis of the estimator (17) we require a bound

on the eigenvalues of the covariance matrices C[n].

Assumption 3. For some β≥1, 1≤λl(C[n])≤β for all i, n.

As can be verified easily, Asspt. 3 implies (cf. (11))

σ̃2
b ≤ β. (18)

Our main analytical result is an upper bound on the prob-

ability of the sparse neighborhood regression (17) to fail. To

this end, we define the error event

Ei := {N (i) 6= N̂ (i)}. (19)

Theorem 3.1. Consider observed samples {x[n]}n∈[N ] con-

forming to the process model (1) such that Asspt. 1, 2 and 3

are valid. Then, if

ρmin ≥ 12sβ/L (20)

and moreover

N≥ 24β(10 + 3L/s)

ρmin

(
4s log(pe)+log(4/η)

)
, (21)

the probability of (17) to fail is bounded as P{Ei} ≤ η, for

the choice λ ≤ ρmin/(6s).

By Theorem 3.1, the true neighborhood N (i) can be re-

covered via (17) with high probability if the samples size N
is on the order of log p when the other parameters are held

fixed. Therefore, GMS via sparse neighborhood regression

(17) is feasible in the high dimensional regime where N ≪ p.

Moreover, the bound (21) indicates that the required sample

size N depends on the ratio s/L and therefore reveals an

interesting trade-off between block length L (of consecutive

samples which are approximately i.i.d.) and the sparsity s of

the underlying CIG. In particular, for a given sample size N ,

we can tolerate less smoothness, i.e., smaller block length L
(cf. (1)), if the underlying CIG is more sparse, i.e., has a

smaller maximum degree s (cf. (9)).

4. PROOF OF THE MAIN RESULT

We now verify Thm. 3.1 by analyzing the probability P{Ei}
of the event Ei (cf. (19)) when (17) fails to deliver the correct

neighborhood N (i). Let us introduce the shorthands

ET :={Z(N (i))+ λsi >Z(T ) + λ|T |},

Z(T ) :=
1

N

B∑

b=1

‖P(b)
T x

(b)
i ‖22. (22)

The error event Ei (cf. (19)) can only occur if at least one ET ,

for some T 6= N (i) with |T | ≤ s, occurs, i.e.,

Ei ⊆
⋃

|T |≤s,N (i) 6=T

ET , (23)

and, in turn via a union bound,

P{Ei} ≤
∑

|T |≤s,T 6=N (i)

P{ET }. (24)

We now derive an upper bound M(ℓ1, t) on P{ET } which

depends on the index set T only via the overlap ℓ1= |N (i)\T |
and the size t = |T |. Let the set N (ℓ1, t) collect all those index

sets with prescribed size t = |T | and overlap ℓ1, i.e.,

P{ET } ≤ M(ℓ1, t) for any T ∈ N (ℓ1, t). (25)

A basic combinatorial argument (see, e.g., [13, Sec. IV])

reveals that the number of these index sets is

N(ℓ1, t) := |N (ℓ1, t)| =
(
si
ℓ1

)(
p− si

ℓ1 + (t− si)

)
.

It will be convenient to introduce the index set

I := {(ℓ1, t) ∈ Z
2
+ : ℓ1 ≤ si, t ≤ s} \ {(0, si)} (26)
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with cardinality |I| ≤ s2. Combining

{|T | ≤ s, T 6= N (i)} ⊆
⋃

(ℓ1,t)∈I

N (ℓ1, t), (27)

with (24) implies, via a union bound,

log P{Ei} ≤ max
(ℓ1,t)∈I

log |I|N(ℓ1, t)+logM(ℓ1, t). (28)

Our next goal is to determine a sufficiently tight upper

bound M(ℓ1, t) on the probability P{ET } (cf. (24)) for an

index set T ∈ N (ℓ1, t). To this end, we make (10) more handy

by stacking ε
(b)
i into εi = (ε

(1)T
i , . . . , ε

(B)T
i )T ∼ N (0,Cεi

)
with

Cεi
=blkdiag{(1/K(b)

i,i )IL}Bb=1. (29)

Using PT := blkdiag{P(b)
T }Bb=1, we can characterize the error

event ET as (cf. (22))

ET =
{
Z(N (i))−(1/N)‖PT εi‖22

>Z(T )−(1/N)‖PT εi‖22 + λ(t− si)
}
. (30)

For some number δ > 0, whose precise value to be chosen

later, we define the two events

E1(δ) :=
{∣∣Z(N (i))− (1/N)‖PT εi‖22

∣∣ ≥ δ
}
, (31a)

E2(δ) :=
{
Z(T )−(1/N)‖PT εi‖22 + λ(t− si) ≤ 2δ

}
. (31b)

By (30), the event ET can only occur if either the event E1(δ)
or E2(δ) occurs. Therefore, by a union bound,

P{ET } ≤ P{E1(δ)}+ P{E2(δ)}. (32)

We now bound each of the two summands in (32) separately.

To this end, let us define

m3 := E{(1/N)‖PT x̃i‖22},
with

x̃i=(x̃
(1)T
i , . . . , x̃

(B)T
i )T .

The bounds for P{E1(δ)} and P{E2(δ)} are stated in the

following lemma.

Lemma 4.1. For the choice of δ = m3/4, the following results

are hold

P{E1(δ)}≤2 exp
(
− ℓ1Nρmin

96β

)
, (33)

and

P{E2(δ)} ≤ 2 exp

(
− Nℓ1ρmin

24β(10 + 3L/s)

)
. (34)

Applying the results of Lemma 4.1 into (32) gets us to

P{ET }
(32)

≤ P{E1(δ)}+ P{E2(δ)}
(33),(34)

≤ 4 exp

(
− Nℓ1ρmin

24β(10 + 3L/s)

)
. (35)

We finalize the proof of Theorem 3.1, by using the RHS of

(35) as M(ℓ1, t) in (28). Thus, P{Ei} ≤ η holds if

max
(ℓ1,t)∈I

{
log

4s2N(ℓ1, t)

η
− Nℓ1ρmin

24β(10 + 3L/s)

}
≤0. (36)

The validity of (36), in turn, is guaranteed if

N≥ 24β(10 + 3L/s)

ρminℓ1

(
log s2N(ℓ1, t)+log(4/η)

)
, (37)

for all (ℓ1, t) ∈ I. Since s ≤ p/3 (cf. (9)),

s2N(ℓ1, t)≤
(
p

s

)4 (a)

≤
[
pe

s

]4s
(38)

where (a) is due to
(
p
q

)
≤

(
pe
q

)q
[13]. Combining (37) and

(38), we finally obtain (21) of Theorem 3.1.
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