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ABSTRACT

We consider the problem of learning the topology of a graph

from a given set of smooth graph signals. We construct a

weighted adjacency matrix that best explains the data in the

sense of achieving the smallest graph total variation. For the

case of noisy measurements of the graph signals we propose

a scheme that simultaneously denoises the signals and learns

the graph adjacency matrix. Our method allows for a direct

control of the number of edges and of the weighted node

degree. Numerical experiments demonstrate that our graph

learning scheme is well suited for community detection.

1. INTRODUCTION

Motivation. Graph signal processing (GSP) is a highly suc-

cessful new engineering paradigm for dealing with huge data

sets since graphs are flexible, efficient, and scalable data mod-

els [1–3]. The main idea is that graphs and the associated

signal models capture the similarity of data items in an intu-

itive and versatile manner. GSP has been used to deal with

applications ranging from online social networks [4–6], rec-

ommender systems [7], and proteomics [8, 9] (see [1] and [3]

for further application examples).

A key problem in GSP, which we tackle in this paper, is

how to learn the topology of a graph from a given set of graph

signals. In particular, our goal is to learn the weighted adja-

cency matrix W ∈ R
N×N of a graph G = ({1, . . . , N},W)

such that a given set of M length-N graph signal vectors

xm ∈ R
N , m = 1, . . . ,M , is smooth on G. In the noisy

setting, given noisy measurements ym = xm + um ∈ R
N

with noise vectors um ∈ R
N (m = 1, . . . ,M ), our goal is to

learn the weighted adjacency matrix W and simultaneously

denoise the measurements to obtain estimates of the graph

signals xm. In contrast to most existing work (see below), we

quantify graph signal smoothness in terms of the total varia-

tion ‖x‖TV =
∑

i

∑
j |xi − xj |Wij . The proposed approach

complements our previous work on graph signal reconstruc-

tion from a small set of noisy signal samples based on total

variation minimization [10].

Related Work. One way to approach the graph learn-

ing problem is to interpret the graph Laplacian L as the in-

verse covariance matrix of a multivariate normal distribution
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and to adapt sparse inverse covariance estimation for learning

Laplacians [11–14]. The underlying assumption is that graph

signals that are smooth in the sense that the quadratic form

xTLx is small are more probable to be observed. However,

other signal smoothness metrics on graphs such as graph total

variation in general cannot be written as a quadratic form and

therefore call for a different approach.

The authors of [15] learn a sparse unweighted graph with

a given number of edges. In order to avoid that the learned

graph is poorly connected, [16, 17] penalizes small weighted

node degrees in the objective function. In [18], the connect-

edness constraint is directly enforced. In contrast, [19] use

the Frobenius-norm of the graph Laplacian to penalize large

node degrees. In [20, 21] the graph topology is estimated

from diffused signals, and in [22] the graph is learned under

the assumption that the signals are band-limited on the graph.

The authors of [23] construct a b-matched graph where each

node has the same number of neighbors. In [24] a graph with

normalized node degree is obtained based on the assumption

that each data point can be expressed as linear combination

of its neighbors. In [25] the graph topology is learned by

minimizing the Laplacian quadratic objective function with

lower bounds on the node degrees and in [26] the graph on a

subsampled image is constructed by connecting pixels which

have small distance and similar image luminance.

Contributions. We formulate the graph learning problem

as a constraint quadratic program in the graph’s edge weights.

As opposed to most graph learning algorithms found in the lit-

erature we quantify signal smoothness in terms of total vari-

ation. All parameters in our scheme have a natural interpre-

tation in terms of the number of neighbors and node degrees

and thus we can explicitly control the number of edges of the

graph, the minimum number of neighbors of each node, as

well as the minimum and maximum degree of each node. In

contrast, most existing approaches have several free parame-

ters whose effect on the topology of the learned graph is only

implicit, thus rendering these algorithms impractical. Our

method doesn’t ensure that the learned graph is connected;

however, in many applications (e.g., community detection) it

is not desirable to enforce connectedness. In the case of noisy

data, we propose to alternate between (i) learning the graph

using the current signal estimates and (ii) denoising by find-

ing the graph signals with minimal total variation among all
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signals with a bounded measurement error. In our constraint

formulation, the noise level can be directly incorporated into

the learning problem. In contrast, an appropriate choice for

the regularization parameters used, e.g., in [15, 19] seems to

be difficult. We confirm the advantages of our total variation

based graph learning method via numerical experiments that

demonstrate its suitability for cluster/community detection.

2. NOISE-FREE GRAPH LEARNING

Problem Formulation. We consider data given in the form

of a noise-free graph signal matrix X = (x1, . . . ,xM ) ∈
R

N×M . Let us define the symmetric discrepancy matrix D ∈
R

N×N with elements

Dij =

M∑

m=1

|xm,i − xm,j |. (1)

For an undirected graph with symmetric weighted adjacency

matrix W = WT ≥ 0 (interpreted element-wise) the aggre-

gate graph total variation for the data matrix X then equals

M∑

m=1

‖xm‖TV =

N∑

i=1

N∑

j=1

DijWij = tr{WD}. (2)

We assume diag(W) = 0. Minimizing tr{WD} aims at

enforcing smoothness of the graph signals on the graph asso-

ciated to W. In order to control the connectivity of the graph,

we add the Frobenius norm of W as penalty term and pro-

pose to learn the unknown weight matrix W by solving the

following convex optimization problem (with β > 0):

min
W

tr{WD}+ β

2
‖W‖2F

s.t. W = WT ≥ 0.

diag(W) = 0,

‖W‖1 = 2N.

(3)

The last constraint is a normalization that prevents the triv-

ial solution W = 0. We note that using the Laplacian form

as smoothness metric instead of total variation amounts to re-

placing the discrepancy matrix D with D̃ij =
∑

m(xm,i −
xm,j)

2. Since W and D are symmetric with zero diagonal,

the optimization problem can equivalently be formulated in

terms of their upper triangular parts only, which we arrange

into vectors w and d of length K = N(N−1)/2. We can

then compactly rewrite (3) as

min
w

wTd+
β

2
wTw

s.t. w ≥ 0,

wT1 = N.

(4)

Solution. The Lagrangian for the optimization problem

(4) is given by

L(λ, ν) = wTd+
β

2
wTw−wT

λ+ ν(N −wT1)

leading to the gradient conditions

∇wk
L = dk + βwk − λk − ν = 0, k = 1, . . . ,K.

Enforcing the complementary slackness conditions [27]

λkwk = 0 implies

λk = 0 → wk =
1

β
(ν − dk),

wk = 0 → λk = dk − ν ≥ 0 → dk ≥ ν.

We therefore obtain the closed-form solution

wk =
1

β
(ν − dk)+, (5)

which amounts to a thresholding of the discrepancies dk to

obtain the graph’s edge weights wk (z+ = max{0, z} de-

notes the positive part). This solution is similar to water-

filling in communications [28, Section 9.4]. The constraint∑K

k=1 wk = N is enforced by choosing the “water level” ν
such that

ω(ν) =
K∑

k=1

(ν − dk)+ = βN. (6)

Since ω(ν) is a monotonically increasing piecewise linear

function with breakpoints at ν = dk, larger β results in a

higher water level and thus in a graph with more edges. The

edges will be placed according to increasing dk. Let d̃k de-

note the discrepancies sorted according to increasing magni-

tude. A phase transition that amounts to an additional edge

will occur whenever ν = d̃l. The associated regularization

parameter equals βl = ω(d̃l)/N with

ω(d̃l) =

l∑

k=1

(d̃l − d̃k) = ld̃l −
l∑

k=1

d̃k.

By choosing β ∈ (βl, βl+1], we can thus directly control the

number of edges in the graph to be l.

Weight and Degree Constraints. We next impose ad-

ditional constraints to take into account prior information re-

garding the topology of the graph. To enforce minimum and

maximum weighted node degrees W1 we propose to aug-

ment (3) with the constraints a ≤ W1 ≤ b with a,b ≥ 0.

An additional upper bound c on the edge weights allows us to

enforce a minimum number of neighbors per node. We thus

arrive at the augmented quadratic program

min
w

wTd+
β

2
wTw

s.t. 0 ≤ w ≤ c1,

wT1 = N,

a ≤ Sw ≤ b.

(7)
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Algorithm 1 TV-based graph learning and denoising

input: Y = (y1, . . . ,yM ), β, a, b, c, ε

initialize: X̂(0) = Y, n = 0
1: repeat

2: compute d(X̂(n)) according to (1)

3: determine ŵ(n) by solving (7)

4: for m = 1, . . . ,M do

5: compute x̂
(n+1)
m via (9) with weights ŵ(n)

6: end for

7: n = n+ 1

8: until stopping criterion is satisfied

output: Ŵ = Ŵ(n−1), X̂ = X̂(n)

Here, S ∈ {0, 1}N×K is constructed such that Sw = W1.

As an example, consider a = b = 2 and c = 2/L; here, the

solution of (7) yields a graph where all nodes have weighted

node degree 2 and at least L neighbors. We note that (7) has

no closed form solution but can be solved efficiently via inte-

rior point methods [27] or via ADMM [29, 30].

3. NOISY CASE

When the observed data Y = (y1, . . . ,yM ) are noisy mea-

surements of unknown actual graph signals X = (x1, . . . ,xM ),
we propose to simultaneously learn the graph and denoise the

data by modifying (7) as follows:

min
w,X

wTd(X) +
β

2
wTw

s.t. 0 ≤ w ≤ c1,

wT1 = N,

a ≤ Sw ≤ b,

‖xm − ym‖2 ≤ ε,

(8)

where the discrepancies d(X) depend on the signals xm and

ε controls the amount of measurement noise. The critical term

in (8) is the total variation

wTd(X) =
1

2

M∑

m=1

‖xm‖TV =
∑

i<j

M∑

m=1

Wij |xm,i − xm,j |,

which is linear in the weights w and convex in the graph sig-

nals X but not jointly convex in W and X. Following [19],

we search for a local minimum of (8) by alternately perform-

ing the (individually convex) minimizations with respect to

w and X, which amounts to the following iterations (summa-

rized in Algorithm 1, n is the iteration index):

1. learn graph weights ŵ(n) via (7) based on the current

graph signal estimates X̂(n);

2. obtain new graph signal estimates X̂(n+1) by denoising

the data Y using the the current graph weights ŵ(n), i.e.,

for m = 1, . . . ,M , solve the convex problem

min
xm

‖xm‖TV =

N∑

i=1

N∑

j=1

Ŵ
(n)
ij |xm,i − xm,j |

s.t. ‖xm − ym‖2 ≤ ε,

(9)

The procedure is initialized with X̂(0) = Y. For n ≥ 1 the

numerical solvers used can be warm-started using the esti-

mates ŵ(n−1) and X̂(n) from the previous iteration.

The optimization problem (9) could be solved via first-

order primal-dual algorithms [10]. However, due to the ad-

vantages provided by the varying penalty strategy [31, Sec-

tion 2.3] and the reasonable stopping criterion, we rather ad-

vocate using the augmented ADMM method from [31] with

the closed form expressions for the proximal operators elab-

orated in [10] and the scaling matrix [31] chosen as sI with

s = 4maxi(
∑

j(Ŵ
(n)
ij )2).

4. NUMERICAL EXPERIMENTS

We next demonstrate that our graph learning scheme is well

suited for cluster/community detection. We consider a graph

consisting of three clusters with 30, 40 and 50 nodes, respec-

tively (N = 120, K = 7140). Nodes within the same cluster

are all connected and there are no edges between different

clusters. The noise-free graph signal values within each clus-

ter are identical (i.e.,the graph signals are piecewise constant

on the clusters). The cluster signal values are drawn from a

standard Gaussian distribution. The observed data consists of

M = 50 graph signals that are corrupted by zero-mean Gaus-

sian noise with average power σ2. Since the average graph

signal power is one, the signal-to-noise ratio is SNR = 1
σ2 .

Accordingly, the bound on the empirical errors in (9) was

set to ε =
√
Nσ. Unless stated otherwise, the signal-to-

noise ratio was −3 dB (i.e., more noise power than signal

power). The reconstruction performance is assessed via the

F-score [11] (i.e., the harmonic mean of edge precision and

recall). The better the learned graph approximates the ground

truth, the closer the F-score is to 1.

We first learn the graph without degree and weight con-

straints (a = 0, b = ∞ · 1 and c = ∞). This means

that step 1 (weight learning) in our scheme uses the explicit

solutions (5) for the weights and only step 2 (denoising) re-

quires a numerical solver. Choosing the initial water level as

ν0 > maxi{minj 6=i Dij(Y)} guarantees that for each node at

least one weight is nonzero and hence there won’t be any iso-

lated nodes in Ŵ(0). In all experiments we set β = 1.001β0

where β0 is determined from ν0 via (6). Since the denois-

ing step (9) tends to decrease the elements of the discrepancy

matrix D(X(n)), the water level may decrease during the it-

erations and possibly result in isolated nodes. We stopped
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Fig. 1: Initial and the final weight matrix estimate W0 and Ŵ, (a), (b) without constraints, (d), (e) with uniform weighted node

degree constraint; (c) the DDGL weight matrix estimate; (f) F-score vs. SNR for different graph learning schemes.

Algorithm 1 as soon as the relative change between two suc-

cessive weight matrix estimates was smaller than δ = 1%,

i.e., ‖Ŵ(n) − Ŵ(n−1)‖F ≤ δ ‖Ŵ(n)‖F. In this setup, Al-

gorithm 1 stopped after five iterations. Figures 1(a) and (b)

show the learned weight matrices Ŵ(0) and Ŵ = Ŵ(4),

which achieve F-scores of 0.54 and 0.86, respectively. Given

the large amount of noise in the graph signal measurements,

this performance is surprisingly good.

We next incorporate the prior knowledge that the graph

has no isolated nodes into our learning algorithm by choos-

ing the upper and lower bound on the weighted node degrees

as a = b = 21, which forces each node to have the same

weighted node degree and to have at least one neighbor. The

weight matrices Ŵ(0) (F-score 0.61) and Ŵ = Ŵ(4) (F-

score 1) obtained with Algorithm 1 are shown in Figures 1(d)

and (e), respectively. Here, the additional constraints on the

weighted node degrees allow all clusters to be correctly iden-

tified via the final weight matrix estimate Ŵ.

We finally compare the graph recovery performance of

our method with the graph learning method based on diag-

onally dominant generalized Laplacian (DDGL) from [11].

Figure 1(c) shows the weight matrix of the graph learned by

the DDGL algorithm with regularization parameter α = 0.5,

which achieves an F-score of 0.48, which is much worse than

the results obtained with our method. In our final experiment,

we compare the graph reconstruction quality of Algorithm 1

and DDGL (with regularization parameters α = 0, α = 0.5,

and α = 1) at different noise levels (corresponding to SNRs

from -10 to 20 dB). All results have been averaged over 5 in-

dependent realizations of the signals and the noise. Figure

1(f) shows the F-scores achieved versus SNR. Algorithm 1

with uniform weighted node degree constraint clearly per-

forms best and accurately recovers the clusters at SNRs as low

as -5 dB. Without node degree constraints, Algorithm 1 per-

forms a bit worse, with an F-score that saturates in the high

SNR regime. The best regularization parameter for DDGL is

α = 0.5, which substantially outperforms α = 0 and α = 1.

At very high SNR, DDGL with α = 0.5 even outperforms

the unconstrained version of our scheme. However, its per-

formance remains worse than that of the constrained version

of Algorithm 1 at all SNRs.

5. CONCLUSION

We considered graph learning based on total variation mini-

mization with noise-free and noise-corrupted data. We pro-

vided insights regarding the effects of all free parameters and

explained how they should be chosen. This renders our frame-

work transparent and practically easy to use in real-world

applications. Our numerical experiments illustrated that our

learning approach is well suited for cluster identification even

in high noise regimes.
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