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ABSTRACT

Predicting the geographical location of users on social networks like
Twitter is an active research topic with plenty of methods proposed
so far. Most of the existing work follows either a content-based or
a network-based approach. The former is based on user-generated
content while the latter exploits the structure of the network of users.
In this paper, we propose a more generic approach, which incorpo-
rates not only both content-based and network-based features, but
also other available information into a unified model. Our approach,
named Multi-Entry Neural Network (MENET), leverages the latest
advances in deep learning and multiview learning. A realization of
MENET with textual, network and metadata features results in an
effective method for Twitter user geolocation, achieving the state of
the art on two well-known datasets.

Index Terms— Twitter user geolocation, multiview learning,
deep learning, feature learning.

1. INTRODUCTION

Social networks have become more and more popular, with bil-
lions of active users on a daily basis. Among the most widely-used
social networks, Twitter stands out as an attractive option, with a
unique mechanism of publishing short messages, termed tweets and
re-posting messages, termed retweets. This way information can be
broadcasted widely and quickly through the Twitter network. As
one of the most popular social networks, a lot of useful, yet unstruc-
tured, information is available on Twitter. User location is essential
for a wide range of applications such as social unrest forecasting [1],
event detection [2] and location-based service recommendation [3].
Nevertheless, the availability of geo-tagged tweets and geolocation-
enabled user profiles on Twitter is highly limited [4]. As a result,
automatically analysing and predicting user’s location from Twitter
data is of great significance, and has received a lot of attention from
both industry and academia.

The task of predicting users’ locations on Twitter is often re-
ferred to as the Twitter User Geolocation problem. Several algo-
rithms have been proposed so far to solve this problem. Existing al-
gorithms can be categorized into two broad groups, namely content-
based and network-based approaches. While content-based algo-
rithms [4, 5] exploit textual contents from tweets, network-based al-
gorithms [6, 7] make use of the connections and interactions between
users for the task of predicting user’s location. Both approaches have
achieved good location accuracy until now [4, 8].

This paper focuses on a more generic approach for the Twitter
user geolocation problem by leveraging recent advances in deep neu-
ral networks [9] and multiview learning [10]. Deep neural networks
have been proven to be very effective in many domains including

image classification [11], image super-resolution [12], speech recog-
nition [13] and compressive sensing [14]. On the other hand, multi-
view learning, which considers learning with multiple feature sets to
improve the generalization performance, has made a great progress
recently [15, 16]. Based on these techniques, our model effectively
predicts users’ locations from Twitter data and achieves state-of-the-
art results in well-known benchmarks. Our contribution in this paper
is three-fold:

• We propose a neural network architecture, named multi-
entry neural network (MENET), for Twitter user geolocation.
MENET is capable of combining multiview features into a
unified model to infer users’ locations.

• We propose a realization of MENET in a Twitter user geolo-
cation method with four specific types of features.

• We present an extensive experimental evaluation on popular
benchmarks. The experiments show that our method achieves
state-of-the-art results.

The remainder of this paper is organized as follows. Section 2
briefly describes related work. Section 3 explains our method in
detail, including the model architecture, feature extraction and learn-
ing. Section 4 presents our experimental settings and results. Finally,
we conclude our paper in Section 5.

2. RELATED WORK

Two main approaches were proposed in the literature for the Twitter
user geolocation problem. The first approach, which has been in-
vestigated thoroughly, uses textual features from tweets for building
location predictive models. The second approach, on the other hand,
arises from the observation that a user often interacts with people
in the vicinity, and exploits the network connections of users. This
section brings a closer look on recent works in both approaches.

Plenty of content-based methods have been proposed for Twitter
user geolocation using geographical topic models [17] and Gaussian
Mixture Models (GMM) [18]. More recently, Liu and Inkpen [5]
trained stacked denoising autoencoders for predicting location of
Twitter users. Char et al. [4] estimated the location by exploiting
the expressiveness of sparse coding to obtain state-of-the-art results
on a benchmark dataset named GeoText [17]. These methods, how-
ever, do not take into account the distribution of users’ locations over
the regions of interest. Addressing this problem, grid-based geolo-
cation is introduced in [19, 20], where an adaptive or uniform grid
is created to partition the datasets into appropriate cells. The predic-
tion of geographic coordinates then is converted to a classification
problem using cells as classes.

The key idea behind the network-based approach is that there
is a correlation between the likelihood of friendship of two social
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network users and their geographical distance [21]. Using this cor-
relation, the location of a user can be revealed via his or her friends’
location. By leveraging social interactions like bi-directional follow-
ing [22] and bi-directional mentioning [7], one can establish a graph
where label propagation [23] or its variants are used to identify lo-
cation of unlabeled users. The weakness of this method is that it
can not propagate labels (locations) to users who are not connected
to the graph. To address this problem, methods combining textual
information and graph topology knowledge are proposed in [24, 8].
Furthermore, these works build densely undirected graphs based on
mentioning of users, which helps improve significantly the results.
A similar mention graph is utilized in this paper. However, instead
of using label propagation directly on the graph like in [24, 8], we
rely on an efficient embedding to capture the graph structure.

3. MULTIVIEW LEARNING ARCHITECTURE

In Twitter user geolocation, we consider a Twitter user of interest
and collect multiple tweets over a period of time. Each tweet con-
tains not only textual content, but also metadata information such as
the posting timestamp. Semantic analysis of tweets can reveal infor-
mation about the location of the user. Textual data can also be used
to retrieve information concerning the user’s interaction with other
users, i.e., to create a network of users. Together with metadata,
these types of information consist the multiple views of the model
proposed in the present work.

The task of Twitter geolocation is to predict the location of a user
in terms of geographical region or exact geocoordinates (longitude
and lattitude). Predicting the geographical region is a classification
problem. Exact prediction of geocoordinates is a regression prob-
lem; however, here, we also address this problem as a classification
problem. Every region is assigned a pair of geocoordinates corre-
sponding to the median value (centroid) of the geocoordinates of all
the sample users belonging to that region. After classifying a new
user to a region, we use the region’s centroid as an estimation of the
user’s location.

We propose a generic neural network model, referred to as
Multi-Entry Neural Network model (MENET), to leverage multiple
views of the Twitter data for this task. We realize our generic model
into an effective Twitter user geolocation system, with four differ-
ent types of features. Next, we present the different feature types
employed in our realization, followed by the proposed MENET
architecture.

3.1. Multiview Features

A common way to employ unstructured information into machine
learning models is the use of embeddings to bring the information
into a structured form. We build representations of textual informa-
tion using word and paragraph embeddings such as Term Frequency
- Inverse Document Frequency (TF-IDF) [25] and doc2vec [26]. The
user network information is represented using an algorithm known
as node2vec [27]. In our realization, we have also employed a times-
tamp feature to leverage information concerning the posting time of
tweets which is often related with user’s location. Next, we describe
the four feature types employed in the proposed MENET architec-
ture.

TF-IDF Feature

Term Frequency - Inverse Document Frequency (TF-IDF) [25] is
a statistical measure used to evaluate how important a term is to

a document in a corpus. The importance of a term increases pro-
portionally to the number of times a term appears in the document
(TF) but is offset by the frequency of the term across the corpus
(IDF). TF-IDF is then defined as a product of TF and IDF values. In
this work, we consider a document a concatenation of tweets posted
from the same user. We employ the well-implemented library scikit-
learn [28] to calculate TF-IDF feature from the document

Context Feature

The context feature is a mapping from a variable-length document,
to a fixed-sized continuous valued vector. This vector provides a
numerical representation, capturing the context of the document.
Originally proposed in [26], the context feature is also referred to
as doc2vec or Distributed Representation of Sentences, and it is an
extension of the broadly used word2vec model [29].

In this work, we employ the Distributed Bag of Words of Para-
graph Vector algorithm (PV-DBOW) [26] for extracting the doc2vec
feature from the Twitter documents. The PV-DBOW algorithm de-
livers robust performance if trained on large datasets [26]. Our im-
plementation utilizes the Gensim library [30] for both training and
extracting features.

Node2vec Feature

Whereas the TF-IDF and doc2vec features capture textual content of
the tweets, with the third feature, we aim to capture the information
of a Twitter user’s network. In particular, from the given tweets,
we build a user network graph with each node corresponding to a
user, and employ the node2vec algorithm [27] to extract continuous
feature representations for each node. Given a set V of nodes, the
basic idea of node2vec is to learn a function f : V → Rd that maps
each node into a d-dimensional feature space which preserves the
connectivity patterns of the whole network.

Our user graph is formed in a way similar as in [8], [24] but in-
stead of predicting users’ locations directly on the graph, we extract
node2vec feature for later use in our model. First, a unique set of
nodes, V , is created for all the users of interest. If a user mentions
directly another user and both of them belong to V , an edge is cre-
ated reflecting this interaction. The weight of an edge is equal to the
number of mentions between the two corresponding users. More-
over, if two users of interest mention a third user, who may or may
not belong to V , we create an edge between these two users, with
a weight equal to the sum of the mentioning times. In addition, we
define celebrity users as users with a high number of unique connec-
tions with regard to a pre-defined threshold. We remove all connec-
tions to these celebrities since celebrities often have a huge number
of active connections, thus mentioning a celebrity is much less likely
to reveal geographical relation.

Timestamp Feature

In many Twitter databases like GeoText [17] and UTGeo2011 [19],
the posting time (timestamp) of all tweets is available in terms of the
Coordinated Universal Time (UTC). In [31], it was shown that there
exists a relation between the time and location of a Twitter stream. In
fact, it is less likely that people tweet late at night than at any other
time, which implies a drift in longitudes. Therefore, the variation
in timestamp could be an indication for longitude. We obtain the
timestamp feature for a given user as follows. First, we extract the
timestamps from all the tweets of that user and convert them to the
standard format to extract the hour. After that, a 24-dimensional
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Fig. 1: The proposed multi-entry neural network architecture

vector is created corresponding to 24 hours in a day; the i-th element
of this vector equals the number of messages posted by the user at
the i-th hour. Finally, this feature vector is `2 normalized.

3.2. Model Architecture

The proposed model is illustrated in Fig. 1. The model takes as input
different types of feature vectors. Each feature vector corresponds to
one view, capturing specific information of the Twitter data. Using
different views of the available Twitter data, the model classifies the
respective user into one of the predefined classes corresponding to
geographical regions. With four feature types employed, our real-
ization of MENET in this work has four views, as shown in Fig. 1.

Each view is the input to one branch in MENET, which is one
fully connected hidden layer. The hidden layer is followed by a Rec-
tified Linear unit (ReLU) [32] activation function. Each branch real-
izes a non-linear function, mapping the original feature vectors into
a unified feature space. In the learned feature space, the outputs from
all views are concatenated to form a compact representation of each
user. This representation serves as the input to a classifier with one
fully-connected (FC) layer. This classifier employs an m-way soft-
max to transform scores into class probabilities, with m the number
of classes.

It is worth mentioning that a more straight-forward approach to
combine multiple features is to concatenate them before inputting
into the network. Nevertheless, we argue that our architecture is
more effective. The simple concatenation of the original feature vec-
tors results in input vectors of high dimensions, which significantly
increase the number of parameters in the model and make the model
more prone to overfitting. Although the number of hidden units in
each layer is adjustable, we opt to set the output of each branch,
except for the timestamp, to be of lower dimension than their corre-
sponding inputs. As a result, each branch can be seen as a dimen-
sionality reduction function. This way, we can mitigate the overfit-
ting problem during training.

We formulate the Twitter user geolocation task as a classification
problem, and employ the cross-entropy loss as the objective function
to train our model. Consideringm classes of users, the cross-entropy
loss over n training samples is given by

L = −
n∑

i=1

m∑
j=1

yji log(ỹ
j
i ), (1)

where yi, i = 1, . . . , n, is the ground-truth vector for sample i, ỹi

Table 1: Hyperparameter setting for MENET.
nh11 , nh12 , nh13 , nh14 denote the number of neurons in the
hidden layers h11, h12, h13, h14 for the features TF-IDF, node2vec,
doc2vec and timestamp, respectively.

Number of hidden units
nh11 150
nh12 150
nh13 30
nh14 30

Table 2: Regional and state classification accuracy results on the
GeoText and UTGeo2011 datasets. N/A stands for not available.

GeoText UTGeo2011
Region State Region State

(%) (%) (%) (%)
Eisenstein et al. [17] 58 27 N/A N/A

Liu & Inkpen [5] 61.1 34.8 N/A N/A
Cha et al. [4] 67 41 N/A N/A

MENET 76 64.8 83.7 69

is the vector holding the predicted probabilities of sample i for each
class, and yji denotes the j-th element of the respective vector.

We train our MENET model using the Stochastic Gradient De-
scent (SGD) algorithm. In order to control overfitting, we employ
a weight decay regularizer and early stopping strategy. Particularly,
during training, the model performance in a seperated validation set
is monitored. If this performance decreases for a pre-defined number
of epochs, the training is stopped. We also anneal the learning rate
as the training proceeds.

At the testing stage, we compare the predicted location classes
with the ground truth labels to measure the model’s performance in
terms of accuracy.

4. EXPERIMENTS

4.1. Datasets

In order to evaluate our proposed model, we employ two datasets,
namely, the GeoText [17] and UTGeo2011 [19] datasets. The Geo-
Text dataset contains approximately 370K tweets from 9475 users in
the US, collected during the first week of March, 2010. This dataset
is splitted into non-overlapping subsets of 7580, 1895 and 1895
users, for training, validation and testing, respectively. Compared
to the GeoText dataset, the UTGeo2011 dataset is larger, with 38M
tweets collected from 449K users in the US. In this dataset, 429K
users, approximately, are reserved for training, while each one of the
validation and testing sets consists of 10K users. In both datases, all
tweets from a specific user are concatenated to form a single docu-
ment. Following [4, 24, 8], the location prediction is performed at
user level, with the ground-truth location of each user defined as the
geocoordinates of the their first tweet. The location is characterized
by two numbers, the longitude and latitude values.

4.2. Performance Criteria

We evaluate our model in three different tasks: (i) four-way clas-
sification of US regions including Northeast, Midwest, West and
South; (ii) fifty-way classification at US state level; (iii) estimation
of the real-valued user coordinates. For the first two tasks, we report
the classification accuracy, whereas, for the latter task, we report
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Table 3: Performance comparison on geographical coordinates prediction. The results include the mean and median distance errors and the
accuracy within 161 kilometers. N/A stands for not available.

GeoText UTGeo2011
mean median @161 mean median @161
(km) (km) (%) (km) (km) (%)

Eisenstein et al. [17] 900 494 N/A N/A N/A N/A
Roller et al. [19] 897 432 35.9 860 463 34.6

Liu and Inkpen [5] 855.9 N/A N/A 733 377 24.2
Cha et al. [4] 581 425 N/A N/A N/A N/A

Rahimi et al. (2015) [24] 581 57 59 529 78 60
Rahimi et al. (2017) [8] 578 61 59 515 77 61

MENET 570 58 59.1 474 157 50.5

the mean and median distance errors. We also compare our model
against reference methods in terms of the accuracy measure @161,
which is defined as the percentage of predictions with a distance er-
ror less than 161 km1. All distance measures between coordinates
are computed using the Haversine formula [33]. We compare the re-
sults of our models to those of recent reference methods in [17], [4],
[19], [24] and [8].

4.3. Implementation Details

We implement our model using Tensorflow2. We first pre-process
the Twitter data by performing tokenization, removing stop words,
URLs and punctuation, and finally stemming the words. These pre-
processing steps are implemented using the NLTK library [34].

Concerning the features, TF-IDF features are extracted using the
scikit-learn library [28], with minimum term frequency across doc-
uments set to 40 and 500 for the GeoText and UTGeo2011 datasets,
respectively. We utilize the original source codes provided by the
authors in [27], [26] to extract the node2vec and doc2vec features
and set both feature types to have 300 dimensions.

In our experiments, we empirically configure our model for each
dataset. The model’s configuration is shown in Table 1. During
training, we use a small learning rate, α = 0, 0001 and regularize
the weight of the output layer, with the regularization parameter λ set
to 0.1. The training procedure is done using the ADAM optimization
algorithm [35].

4.4. Results

The regional and state classification results are shown in Table 2. As
can be seen from this table, our model significantly outperforms the
state of the art in both region and state levels on the GeoText dataset.
By leveraging the classification strength of multiple features, the im-
provement in regional accuracy is 9% compared to the state-of-the-
art results presented in [4]. Concerning the state classification, the
achieved accuracy is 64.8% compared to 41% in [4]. It should be
noted that the classification results of the reference methods on the
UTGeo2011 dataset are not available.

The comparison between all methods on the geocoordinate pre-
diction task is presented in Table 3. Our MENET model performs
overall the best on the GeoText dataset. Compared to [8], our model
has lower mean and median distance errors, and marginally higher
accuracy measure @161. On the UTGeo2011 dataset, our MENET
model also outperforms all reference methods in terms of mean dis-
tance error. Nevertheless, [24] and [8] achieve better results for other

1161 km ∼ 100 mile
2https://www.tensorflow.org/

metrics. It should be noted that these two methods employ map par-
titioning strategies to create new classes optimized for each dataset
taking into account the geographical distribution of users. Requir-
ing each class to have approximately the same number of users, the
partitioning algorithm yields more balanced classes: high density re-
gions (classes) are divided into smaller areas resulting in better accu-
racy. Large areas results in lower prediction accuracy. On the other
hand, our method relies on the administrative boundaries of regions
and states, ignoring the users’s distribution. This brings an adverse
effect on our method. However, the map partitioning strategies are
independent from the network architecture and can be applied to the
proposed MENET model. We leave this exploration for our future
work.

5. CONCLUSION

Twitter user geolocation is a challenging task because of insuffi-
cient labelled training data. The linguistically noisy nature of the
Twitter data and the excessive size of the Twitter network make the
task even harder. While there exist several approaches in the litera-
ture, the problem of attaining a high accuracy still remains open. In
this paper, we follow the multiview learning paradigm by combining
knowledge from both user-generated content and network interac-
tion. In particular, we propose a neural network model, referred to
as MENET, that uses word frequency, paragraph semantics, network
topology and timestamp information, to infer users’ locations. Our
model achieves state-of-the-art results and can be easily extended to
leverage other types of information, besides the considered types of
data.
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