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ABSTRACT

A novel method for common and individual feature analysis from
exceedingly large-scale data is proposed, in order to ensure the
tractability of both the computation and storage and thus mitigate
the curse of dimensionality, a major bottleneck in modern data sci-
ence. This is achieved by making use of the inherent redundancy in
so-called multi-block data structures, which represent multiple ob-
servations of the same phenomenon taken at different times, angles
or recording conditions. Upon providing an intrinsic link between
the properties of the outer vector product and extracted features
in tensor decompositions (TDs), the proposed common and indi-
vidual information extraction from multi-block data is performed
through constraints which impose physical meaning on otherwise
unconstrained factorisation approaches. This is shown to dramat-
ically reduce the dimensionality of search spaces in subsequent
classification procedures and to yield greatly enhanced accuracy.
Simulations on a multi-class classification task of large-scale ex-
traction of individual features from a collection of partially related
real-world images demonstrate the advantages of the “blessing of
dimensionality” associated with TDs.

Index Terms— Tensor decomposition, feature extraction, com-
mon and individual features, classification

1. INTRODUCTION

Modern datasets in data science applications have immense volume,
veracity, velocity and variety (the for V‘s of big data) [1, 2], and
often exhibit a large degree of structural richness among their en-
tries. These data characteristics are often prohibitive to the appli-
cation of classical matrix algebra as its “flat-view” way of opera-
tion cannot cope with the sheer volume of data and the correspond-
ing imbalanced matrix structures, such as as “tall and narrow” or
“short and wide” ones. On the other hand, when arranged into multi-
dimensional structures (tensors), the same data often admit much
more convenient and mathematically tractable ways of analysis, by
virtue of the associated multi-linear algebra. However, until recently,
such an approach to data analysis was not very popular, due to high
demand for storage and computational resources.

There are several ways to tensorize data prior to further analy-
sis, such as through: (i) natural tensor formation, (ii) experimental
design, or (iii) mathematical construction [3]. This flexibility and
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Fig. 1: Efficient representation of an imbalanced block-matrix struc-
ture (a set of video frames, top row) in the form of much more con-
venient and flexible tensor structure (a cube of frames, bottom row).

a highly informative nature of multi-way data representation is sup-
ported by tensor decompositions (TDs) which allow for storage and
memory efficient low-rank approximation of otherwise intractable
large data, and are being exploited in diverse range disciplines in-
cluding brain science [4, 5], chemometrics [6], psychometric [7],
machine learning [8, 9] and signal processing [3].

The generalisation of a matrix to a tensor, as in Fig. 1, is in-
tuitive but highly non-trivial, not least due to multi-linear algebra
having different properties to linear algebra. Along these lines, the
authors in [10] consider the physical meaning of factor matrices
obtained through TDs. Missing data can also be handled through
tensor dictionary learning [11], whereby the tensor structure allows
for a simultaneous retrieval of local patterns and establishing the
global information. The algorithms for classification of the multi-
dimensional data have been proposed in [12, 13].

We here consider a problem of the extraction of information and
classification of reduced dimension features from large-scale multi-
block data. A typical example of such structure is a set of record-
ings of the same phenomenon but under different experimental se-
tups, such as multiple images of objects recorded under different
lighting and angle combination, multi-block data. Intuitively, the
so obtained ensemble of images contains some common and some
individual features, and machine learning tasks would benefit from
exploiting only either common features (for clustering) or individual
features (for identification), both of much lower dimensionality than
the original data. In this work, to resolve the computational and stor-
age issues for large scale classification problems, the identification of
common features is achieved by first providing an additional insight
into the physical meaning of the outer product of multiple vectors in
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the tensor setting, supported by an intuitive example. The separation
of the common and individual feature subspaces is then achieved
by multi-linear rank decomposition (LL1), whereby the number of
“simplest” data structures in such a decomposition is equivalent to
the number of multi-linear tensor ranks [14]. The non-negativity
constraint is further imposed on the so extracted factors, to preserve
the physical properties of the images considered. Simulations on
the benchmark ORL dataset demonstrate that the proposed method
provides significant advantages in terms of accuracy, mathematical
tractability and ease of interpretation, when used in conjunction with
standard classification algorithms.

2. COMMON AND INDIVIDUAL COMPONENTS IN DATA

Consider a set, X , of N observations in a matrix form, given by

X = {Xn ∈ RI×Jn : n = 1, 2, . . . , N} (1)

where the so called block-matrix structure X could be a represen-
tation of medical images, EEG recordings, or financial stock char-
acteristics. All members of such a set of matrices X are naturally
linked together and it would be beneficial to analyse them simulta-
neously at the same time, however, the representation in (1) yields
imbalanced (tall and narrow) structure which is cumbersome for fur-
ther processing. The main goal of the common and individual feature
analysis is, therefore, to make use of the “blessing of dimensional-
ity” associated with tensor structures, in order to find a much lower-
dimensional unique subspace Ā that is common across all n ∈ N .
In this way, the common subspace, Ā, can be separated from the
individual information, Ăn, for every n.

The flat view matrix methods typically stack all entries of X
into a tall and narrow matrix X =

[
XT

1 ,X
T
2 , . . . ,X

T
N

]T and subse-
quently perform matrix factorisations, such as the group independent
component analysis (ICA) [15], to give:

X = ĂĀT (2)

where Ă =
[
ĂT

1 , Ă
T
2 , . . . , Ă

T
N

]T . In [16], this method was applied
to neuroimaging data of patients with Alzheimer disease, whereby Ā
is interpreted as well established knowledge about the disease (com-
mon components), while Ăn represents the individual state for a
specific patient. However, as with all matrix models, this approach
does not generalise well and is only appropriate when all compo-
nents, Xn, of the tall and narrow matrix, X, exhibit exactly the same
common information.

Approaches to common and individual feature extraction pre-
sented in [17, 18] also employ an ICA like factorisation to every en-
try of the naturally linked dataset given in (1), to yield

Xn = AnBT
n =

[
Ā Ăn

] [B̄T
n

B̆T
n

]
= ĀB̄T

n + ĂnB̆T
n = X̄n + X̆n

(3)

where the matrices, X̄n, are the common components across the
dataset X , while the matrices, X̆n, are the individual components
for every Xn in X . The matrices Ā and Ăn are the basis matri-
ces respectively for the matrices X̄n and X̆n, while the matrices,
B̄n and B̆n represent mixing coefficients so that X̄n = ĀB̄T

n and
X̆n = ĂnB̆T

n

Remark 1. Due to the linear separability of the matrices X̄n and
X̆n, it is sufficient to establish the basis of the common information,
Ā, which can be estimated through iterative minimisation of the cost

Fig. 2: The Canonical Polyadic Decomposition (CPD). The tensor,
X, is represented as a sum of rank-1 tensors, Xr , given by the outer
product of the factor vectors ar,br, cr .

function, formulated in [19] as:

J(Qn, z(n,m),am) =

N∑
n=1

∥∥Qnz(n,m) − am

∥∥2
F

(4)

where the orthogonal matrix Qn is obtained from Xn = QnRn,
z(n,m) is the column vector of Zn = Rn(B

T
n )

† and am is the com-
mon component which defines the basis of Ā, if the cost in (4) is
smaller then a predefined threshold. Thus, the weak but consis-
tently presented similarities among data matrices from the dataset X
contribute to the total cost in (4) the same amount as the very promi-
nent ones and, therefore, take important part in the multi-block data
analysis.

The matrix approaches have their pros and cons and are powerful
if exploited appropriately, however, they do not account directly for
the intrinsic multidimensional form of data. To this end, we propose
a novel method for common and individual feature extraction which
exploits multi-modal properties of tensor decompositions.

3. NOTATION AND THEORETICAL BACKGROUND
A tensor of order N is a N-dimensional array and is denoted by a
bold underlined capital letter, X ∈ RI1×I2×···×IN . A particular di-
mension of X is usually referred to as a mode. An element of a tensor
is a scalar xi1,i2,...,iN = X(i1, i2, . . . , iN ) which has N indices. A
fiber is a vector obtained by fixing all but one of the indices, e.g.
X(i1,:,i3,...,iN ) is the mode-2 fiber. Fixing all but two of the indices
yields a matrix called a slice of a tensor, e.g. X(:,:,i3,...,iN ) is the
frontal slice. Mode-n unfolding is the process of element mapping
from a tensor to a matrix, e.g. X → X(2) is the mode-2 unfolding.
A mode-n product of a tensor with a matrix is equivalent to

Y = X×n A ⇔ Y(n) = AX(n) (5)

The outer product ofN vectors results in a rank-1 tensor of orderN ,
e.g. a1 ◦ a2 ◦ · · · ◦ an = X ∈ RI1×I2×···×IN

3.1. Basic Tensor Decompositions
The Canonical Polyadic Decomposition (CPD), illustrated in Fig. 2,
represents a given tensor X as a sum of rank-1 tensors Xr, r =
1, 2, . . . , R. For a third order tensor of rank R, the CPD is given by

X ∼=
R∑

r=1

Xr
∼=

R∑
r=1

λr · ar ◦ br ◦ cr

∼= Λ×1 A×2 B×3 C = JΛ;A,B,CK

(6)

where Λ is a superdiagonal core tensor that guarantees “one to one
relation” for the factor vectors ar,br and cr , while A,B and C
are factor matrices which are composed of the corresponding fac-
tor vectors, e.g. A =

[
a1,a2, . . . ,aR

]
. Despite soft uniqueness

conditions, in practice the CPD in (6) does not provide the exact
decomposition of the original data tensor [20]. On the other hand,
the Higher Order Singular Value Decomposition (HOSVD) requires
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Fig. 3: The LL1 decomposition is a combination of the CPD and the
HOSVD. The tensor Xk = (AkBT

k ) ◦ ck still exhibits the simplest
structure within the LL1 decomposition framework.

orthogonality constraints to be imposed on the factor matrices, is
always exact [21], and takes the form

X =

Ra∑
ra=1

Rb∑
rb=1

Rc∑
rc=1

grarbrc · ara ◦ brb ◦ crc

= G×1 A×2 B×3 C = JG;A,B,CK

(7)

where G is a dense core tensor, A,B, and C are the orthogonal
factor matrices and the n-tuple (Ra, Rb, Rb) is called the multi-
linear rank. Observe that the HOSVD1 also decomposes multi-
dimensional data into a sum of rank-1 terms ara◦brb◦crc . However,
as opposed to the “one to one” relation for the CPD, the HOSVD
models all possible combinations of its factor vectors, hence, provid-
ing enhanced flexibility. To make use of the desirable properties of
both CPD and HOSVD, the LL1 decomposition efficiently combines
their concepts [22], by decomposing the tensor X into a linear com-
bination of K tensors, whereby each term Xk = JΛk;Ak,Bk, ckK
has a multi-linear rank (Lk, Lk, 1), that is

X =

K∑
k=1

Xk =

K∑
k=1

(AkBT
k ) ◦ ck =

K∑
k=1

Gk ◦ ck

=

K∑
k=1

Λk ×1 Ak ×2 Bk ×3 ck =

K∑
k=1

Gk ×3 ck

(8)

The LL1 decomposition is illustrated in Fig. 3, where X ∈ RO×P×Q,
and the “one to one” relation between the factor matrices Ak ∈
RO×Lk , Bk ∈ RP×Lk , and factor vector ck ∈ RQ is pre-
served. Moreover, upon employing the matrix-tensor duality, we
can represent the matrix Gk ∈ RO×P as a tensor of order three,
Ĝk ∈ RO×P×1, so that Ĝk = Gk.
Remark 2. The matrix Gk in (8) is no longer of rank-1 and is
consequently more informative. However, the so-obtained tensor
Xk = Gk ◦ ck is still considered to exhibit the simplest structure as
far as the LL1 decomposition is concerned.

4. COMMON AND INDIVIDUAL FEATURE EXTRACITON

The intuition behind the proposed common and individual feature
analysis is given in the following examples.
Example 1. Observe a rank-1 tensor of order 3, expressed as

X = a ◦ b ◦ c = Y ◦ c with c =
[
1 4 8

]T (9)

According to the values of c and the definition of the outer product,
the values in the first frontal slice of X(:,:,1) are respectively four and
eight times smaller then the values in the second X(:,:,2) and third
X(:,:,3) frontal slices. Hence, each observation stored as the frontal
slice of X exhibits the same pattern (base matrix Y = a ◦ b) that
can be considered as a common feature. At this point, no individual
information can be extracted since there is only one base matrix.
Example 2. Consider a collection, X, of five different color matrices
stacked along the third dimension, as illustrated in Fig. 4. The tensor

1The HOSVD is a particular case of the Tucker Decomposition.

Color ensemble

= rank-1

Red
Base color 1

cR

+ rank-1

Green
Base color 2

cG

+ rank-1

Blue
Base color 3

cB

Fig. 4: Link between the outer product and common features for
multidimensional data. The ensemble consists of the grey, yellow,
magenta, bright blue and brown-orange colors each of which is a
combination of three base colors: red, green, blue.

Algorithm 1. LL1 decomposition with non-negativity constraint

Input: X ∈ RO×P×Q and K sets of multilinear tensor rank
(Lk, Lk, 1)

Output: Factor matrices Ak ∈ RO×Lk ,Bk ∈ RP×Lk , ck ∈ RQ,
and scaling vectors λk ∈ RLk

1: Initialize factor matrices Ak,Bk, ck

2: while not converged or iteration limit is not reached do
3: for k = 1, . . . , K do
4: X = X−

∑N
n=1,n6=kJΛn;An,Bn, cnK

5: Ck = repeat(ck, Lk)
6: Âk = X(1)(Ck �Bk)(C

T
k Ck ∗BT

k Bk)
†

7: B̂k = X(2)(Ck �Ak)(C
T
k Ck ∗AT

k Ak)
†

8: ĉk = NonNegLeastSq (A�B,X(3))

9: Normalize each column of Âk, B̂k and ĉk to unit length
and store the norms in λk

10: Assign Âk → Ak; B̂k → Bk; Ĉk → Ck

11: end for
12: end while
13: return Ak,Bk,Ck and λk

rank of such a 3rd order tensor (color ensemble) is three, that is,
equivalent to the number of base colors (red, green, blue), which are
the simplest structures from which all data can be generated through
a mixing matrix C = [cR, cG, cB ] ∈ R5×3. Thus, adopting the
multi-linear notation and the RGB representation of colors, we can
write

X = Λ×1 A×2 B×3 C = Y ×3 C

= Y(:,:,1) ◦ cR + Y(:,:,2) ◦ cG + Y(:,:,3) ◦ cB

cR =
[
128 256 256 0 256

]T
cG =

[
128 256 0 256 128

]T
cB =

[
128 0 256 256 32

]T
(10)

Here, X ∈ RI×J×5 is the original data, and C = [cR, cG, cB ] ∈
R5×3 contains intensity values of the red, green and blue colors.
These three base colors are stored in different rank-1 frontal slices
of the tensor Y = Λ×1 A×2 B ∈ RI×J×3 and represent common
information among the frontal slices X(:,:,n). The individual fea-
tures can be obtained by subtracting the weighted common features,
to give

X̆n = Xn − X̄ = X(:,:,n) −
∑

k∈Kn

αkY(:,:,k) (11)

whereKn is a subset of common features for Xn with respect to the
values in the n-th row of C.
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Fig. 5: Examples of the tensor representations for Xi ∈ R112×92×40

where the images of 40 different subjects were stacked along the
third dimension during the training stage for tensor-based common
and individual feature extraction.

4.1. LL1 decomposition with non-negativity constraint

If a slice Y(:,:,k) belongs to the set of common features for the data
sample X(:,:,n), then an intuitive implication is that the correspond-
ing value of C(n,k) is positive. However, this cannot be guaran-
teed for a general implementation of TDs, and the non-negativity
constraint should be imposed on the factor matrix C, since it cor-
responds to the mode along which members of the ensemble are
stacked together. In order to obtain more descriptive common fea-
tures, we employ the LL1 decomposition from (8). In this way, the
rank of a frontal slice Y(:,:,k) is increased (see Remark 2), whereby
the extraction of the common features is given by

Y(:,:,k) = AkBT
k (12)

and requires the minimization of the cost function

min
Ak,Bk,ck

∥∥∥∥∥∥X−
K∑

k=1

JΛk;Ak,Bk, ckK

∥∥∥∥∥∥
2

F

s.t. ck > 0 (13)

Notice that this problem is similar to the computation of the CPD
in (6). Therefore, our solution is based on the ALS-CPD al-
gorithm (we refer to [20] for more detail) and is summarized
in Algorithm 1, where ∗ and � denote respectively Khatri-Rao
and Hadamard products, (·)† is the MoorePenrose pseudoinverse,
NonNegLeastSq(X,Y) performs least squares on an input X and
an output Y, the least squares coefficients are constrained to be
non-negative [23], while repeat(X, n) duplicates an input X n
times.
Remark 3. For the illustration of the proposed approach, we used
a tensor of order three, however, unlike matrices the proposed ap-
proach generalises well and allows for the common and individual
features to be extracted from a tensor of any order, with only one
requirement that observations must be concatenated along the same
mode.

5. SIMULATIONS AND ANALYSIS
The proposed approach was employed for the classification of face
images from the benchmark ORL dataset [24]. This database in-
cludes a total of the 400 grey scale images of 40 subjects in ten dif-
ferent illumination conditions and facial expressions. Ten sets of 40
images were created by randomly choosing one image of every sub-
ject. Six of these sets were arbitrarily selected for the training set
with the remaining four forming the test set. Each group from the
training set was represented as a tensor Xi ∈ R112×92×40 where
the images of 40 different subjects were stacked along the third di-
mension, as in Fig. 5. Their individual features were extracted by
applying the proposed framework with the non-negativity constraint

Original information Common information
CPD LL1

Individual information
(Original – Common LL1)

Fig. 6: Common and individual feature extraction. Left: Examples
of images in the ORL dataset. Center: Examples of common fea-
tures computed through the CPD and LL1 decompositions. Right:
Examples of extracted individual features obtained by subtraction of
the common information from the corresponding original images.

imposed on the mode-3 factor matrix, while the number of common
features was found empirically. The classification models used were
SVM, NN, QD and cKNN and were trained on the so obtained in-
dividual information. The classification scores were calculated from
100 realizations. Note that during the test stage, we used the original
images in order to make a fair and realistic evaluation.

Table 1: Classification Performance in %
SVM NN QD cKNN

Original 83.9 4.35 91.5 79.0

CPD 91.5 85.8 89.8 85.5

LL1 94.7 92.2 86.8 84.3

Fig. 6 illustrates examples of images used in the experiments,
and the extracted individual information and common features for
the CPD and LL1 decomposition. Table 1 summarizes the perfor-
mance of multi-class classification of the original images based on
the corresponding individual information, extracted through the pro-
posed method for the CPD and LL1 decompositions. The most sig-
nificant improvement can be observed for the NN based classifier.
Here, the poor accuracy on the original data is associated with the
high variance of the original samples and the small size of the train-
ing set which resulted in overfitting. On the other hand, the extracted
individual features were of lower variance, which allowed the NN
classifier to find a decision boundary that is less prone to fluctuations
in the training data, leading to much higher classification accuracy.

6. CONCLUSION
We have proposed a novel framework for common and individual
feature extraction based on the CPD and LL1 tensor decompositions
with the non-negativity constraint. The multi-modal relations ex-
pressed through the outer product have been shown to play a key role
in the extraction of the shared information from multi-block data.
In this way, the performance of machine learning algorithms can
be greatly enhanced, as the classification models use only the much
lower dimensional and significantly more discriminative individual
information during the training stage. Simulations have employed
the ORL database of images taken from various angles, under sev-
eral illumination conditions, and with different face expressions of
the subjects and have achieved excellent results. Unlike the matrix
methods, the proposed method is very flexible and is not restricted
to input data of a specific shared structure or images of the same
dimensions.
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