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ABSTRACT

We consider corruption-resistant L1-norm-based TUCKER2 (L1-
TUCKER2) decomposition of a D×M×N 3-way tensor, treated
(with no loss of generality) as a collection of N D×M matri-
ces. Our contributions are as follows. First, we show that rank-1
L1-TUCKER2 can be cast as a combinatorial problem over N
antipodal-binary variables; accordingly, we provide the first exact
algorithm for its solution. Then, we develop an efficient (quadratic-
cost/near-exact) algorithm that approximates the solution to rank-1
L1-TUCKER2 by means of a converging sequence of optimal single-
bit flips; the algorithm is accompanied by formal convergence proof
and complexity analysis. Finally, by means of the standard deflation
technique, we generalize the developed bit-flipping algorithm for
solving L1-TUCKER2 decomposition problems of general rank.
Our extensive numerical studies show that the bit-flipping algorithm
returns the exact L1-TUCKER2 solution with very high frequency.
Moreover, the developed exact and efficient algorithms exhibit re-
markable outlier resistance, outperforming some of the most popular
L2-norm-based and L1-norm-based counterparts.

Index Terms— Data analysis, L1-norm, outliers, robust, ten-
sors, Tucker decomposition.

1. INTRODUCTION

TUCKER decomposition [1, 2] is a fundamental method for n-way
tensor analysis, with applications in a wide range of fields, including
computer vision [3, 4], wireless communications [5], biomedical
signal processing [6], deep neural networks [7], and social-network
data analysis [8, 9] to name a few. If the n-way tensor under
processing has been formed by the concatenation (say, across the
n-th mode) of a number of coherent (same class, or distribution)
(n − 1)-way coherent tensor measurements, then TUCKER2 de-
composition is commonly employed. TUCKER2 seeks to jointly
decompose the collected (n − 1)-way tensors and unveil the low-
rank multi-linear structure of their class/distribution. Popular solvers
for TUCKER/TUCKER2 are the Higher-Order Singular-Valued De-
composition (HOSVD) and the Higher-Order Orthogonal Iteration
(HOOI) algorithms [2, 4]. A detailed presentation of TUCKER,
TUCKER2, and their algorithmic solvers is offered in [2, 10, 11].
For n = 2, TUCKER/TUCKER2 coincide with standard matrix
Principal-Component Analysis (PCA). For n = 3, TUCKER2 has
been also studied/solved under the name Generalized Low-Rank Ap-
proximation of Matrices (GLRAM) [12] and Multilinear PCA [13].
In this work, we focus on TUCKER2 and, more specifically, on its
L1-norm reformulation discussed below.

∗Corresponding author.

Similar to PCA, TUCKER and TUCKER2 have been shown to
be sensitive against outliers within the processed tensor [14–16], due
to their Frobenius/L2-norm formulation (i.e., L2-residual-error min-
imization, or, equivalently, L2-projection-variance maximization
[2]). On the other hand, L1-norm-based PCA (L1-PCA) [17–20],
formulated simply by substitution of the L2-norm in PCA by the
L1-norm, has exhibited in the past few years remarkable outlier re-
sistance in many applications. Extending this formulation to tensor
processing, one can similarly endow robustness/outlier-resistance
to TUCKER2 by substituting the L2-norm in its formulation by
the L1-norm. We call this new tensor decomposition method L1-
TUCKER2.

For n = 3, an approximate algorithm for L1-TUCKER2 was
proposed in [14] under the title L1-norm Tensor PCA (TPCA-L1).
This algorithm is iterative and guarantees convergence, but not exact
solution to the L1-TUCKER2 problem. In fact, the exact solution to
L1-TUCKER2 remains to date unknown. In this work, we present
for the first time the exact solution to L1-TUCKER2, for the special
case of rank-1 decomposition. Specifically, in Section 3, we show
that rank-1 L1-TUCKER2 can be solved by an exhaustive search
over antipodal-binary (bit) variables. Next, in Section 4, we develop
an efficient (quadratic-cost/near-exact) algorithm that approximates
the solution to rank-1 L1-TUCKER2 by means of converging single-
bit-flipping iterations. Finally, we employ rank-deflation to general-
ize the developed bit-flipping algorithm for solving L1-TUCKER2
decomposition of general rank. Our numerical studies in Section
5 show that the bit-flipping algorithm returns the exact solution to
L1-TUCKER2 with very high probability. Moreover, our numerical
studies on low-rank tensor approximation in the presence of outliers
show that both the exact and the efficient algorithms presented in
this work exhibit remarkable outlier resistance, outperforming some
of the most popular L2-norm-based and L1-norm-based TUCKER,
such as HOSVD, HOOI, GLRAM, and TPCA-L1.

2. PROBLEM STATEMENT
We consider a collection of N real-valued matrices of equal size,
X1,X2, . . . ,XN ∈ RD×M , collated to form the 3-way tensor X ∈
RD×M×N , such that X:,:,i = Xi. For any rank d ≤ min{D,M},
TUCKER2 decomposition of X seeks to jointly analyze its matrix
“slabs” {Xi}Ni=1, by maximizing

∑N
i=1 ‖U

>XiV‖2F over U ∈
RD×d and V ∈ RM×d, such that U>U = V>V = Id. Then,
for every i, Xi is low-rank approximated as UU>XiVV>. The
squared L2/Frobenius norm ‖ · ‖2F in the metric of TUCKER2 re-
turns the summation of the squared entries of its matrix argument.
Clearly, for N = 1, TUCKER2 simplifies to the rank-d approxima-
tion of the single matrix X1 ∈ RD×M , solved by means of standard
Singular Value Decomposition (SVD) [21]; i.e., the optimal argu-
ments U and V are built by the d left-hand and right-hand singular
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vectors of X1, respectively.
To counteract against the impact of any outliers that possibly

exist among the entries of {Xi}Ni=1, in this work we consider the
L1-norm-based TUCKER2 reformulation

L1-TUCKER2: maximize
U∈RD×d; U>U=Id
V∈RM×d; V>V=Id

N∑
i=1

‖U>XiV‖1, (1)

where the L1-norm ‖ · ‖1 returns the summation of the absolute
values of its matrix argument. The formulation in (1) was studied
in [14] under the title TPCA-L1, where authors presented an ap-
proximate iterative algorithm for its solution (with no guarantee for
global optimality). The exact solution to (1) remains to date un-
known. In this work, we deliver for the first time the exact solution
to L1-TUCKER2 for the special case of d = 1. In addition, we offer
efficient (quadratic-cost/near-exact) algorithms for L1-TUCKER2,
for decomposition of rank d ≥ 1.

3. EXACT SOLUTION TO L1-TUCKER2 FOR d = 1

We first show that, for d = 1, L1-TUCKER2 in (1) can be cast
as (and solved through) a combinatorial problem over antipodal-
binary variables. We start with the observation that, for d = 1,
L1-TUCKER2 takes the simpler form

maximize
u∈RD×1,v∈RM×1

‖u‖2=‖v‖2=1

N∑
i=1

|u>Xiv|. (2)

Then, we notice that, for any real vector a ∈ Rm, it holds ‖a‖1 =∑m
i=1 |ai| =

∑m
i=1 sgn (ai) ai = sgn (a)> a = maxb∈{±1}m b>a,

where sgn (·) returns the {±1}-sign of its argument. Therefore, for
any given u ∈ RD and v ∈ RM , it holds that

N∑
i=1

|u>Xiv| = max
b∈{±1}N

u>X(b)v, (3)

where, for any b ∈ {±1}N , we define X(b)
·
=
∑N

i=1 bnXn,
for ease in notation. Accordingly, the maximum in (3) is attained
for b = [sgn

(
u>X1v

)
, sgn

(
u>X2v

)
, . . . , sgn

(
u>XNv

)
]>.

Next, we observe that, for any b ∈ {±1}N and corresponding
D ×M matrix X(b), it holds that

max
u,v;‖u‖2=‖v‖2=1

u>X(b)v = σmax (X(b)) (4)

where σmax(·) returns the highest singular value of its matrix ar-
gument [21]. The maximum in (4) is attained if u and v are the
left-hand and right-hand dominant singular vectors of X(b), respec-
tively. Combining (3) and (4), we obtain

max
u,v;‖u‖2=‖v‖2=1

N∑
i=1

|u>Xiv| = max
b∈{±1}N

u,v;‖u‖2=‖v‖2=1

u> (X(b)) v (5)

= max
b∈{±1}N

σmax (X(b)) . (6)

The following Proposition 1 derives straightforwardly from (5)-(6)
and unveils the combinatorial nature of L1-TUCKER2 in (2).
Proposition 1. Let bopt be a solution to

maximize
b∈{±1}N

σmax(X(b)). (7)

Algorithm 1: Exact L1-TUCKER2 for d = 1

Input: X
0: Set m′ ← 0
1: For every b ∈ {±1}N , do
2: Calculate m← σmax(X(b))
3: If m > m′, m′ ← m and bopt ← b
4: (uopt,vopt)← dsv(X(bopt))

Output: uopt,vopt

Fig. 1. Exact algorithms for L1-TUCKER2 decomposition of X, for d = 1.
dsv(·) returns the dominant singular vectors of its matrix argument.

Also, let uopt ∈ RD and vopt ∈ RM be the left-hand and right-
hand dominant singular vectors of X(bopt) ∈ RD×M , respec-
tively. Then, (uopt,vopt) is an optimal solution to (2). Also, bopt =

[sgn
(
u>optX1vopt

)
, . . . , sgn

(
u>optXNvopt

)
]> and

∑N
i=1 |u

>
optXivopt|

= u>optX(bopt)vopt = σmax (X(bopt)). In the special case that
u>optXivopt = 0, for some i ∈ {1, 2, . . . , N}, [bopt]i can be set to
+1, having no effect to the metric of (7). �

Proposition 1 establishes that, given the solution to (7), bopt, the
solution to L1-TUCKER2 (d = 1) is obtained simply by the SVD
of the D ×M matrix X(bopt). The solution to (7) can be obtained,
e.g., by exhaustive search in its size-2N feasibility set {±1}N . This
exhaustive search, summarized in Fig. 1, constitutes the first exact
algorithm in the literature for L1-TUCKER2 rank-1 decomposition.

Certainly, exhaustive search over {±1}N becomes quickly in-
tractable as N increases. For instance, for N = 100, the exact
algorithm of Fig. 1 would require 2100 singular-value calculations,
which is of course impractical. In the sequel we present an efficient
solver for L1-TUCKER2 with cost at most quadratic in (D,N,M).

4. L1-TUCKER2 VIA BIT-FLIPPING

Similar to L1-TUCKER2, L1-PCA has also been shown to be solv-
able through combinatorial optimization over a binary feasibility
set [17, 18]. Recent works on L1-PCA [22, 23] propose to evade
a costly exhaustive search and, instead, approach the solution by
means of bit-flipping iterations. Motivated by this idea, here we de-
velop (BF-TUCKER2): a quadratic-cost algorithm that approximates
the solution to L1-TUCKER2, by means of converging bit-flipping
iterations. In the sequel, we present BF-TUCKER2 for d = 1. Then,
we generalize it to d > 1.

4.1. BF-TUCKER2 for d = 1

We initialize at an arbitrary binary vector b(1) ∈ {±1}N , e.g., as
b(1) = sgn(y), for some Gaussian y ∼ N (0N , IN ). Then, we
conduct single-bit-flipping iterations as follows. At the q-th iteration
step, q ≥ 1, we find the entry of vector b(q) the negation/flipping of
which offers the maximum increase in the metric of (7). That is, we
find the index k that solves

k = argmax
i∈{1,2,...,N}

σmax

(
X
(
b(q) − 2b

(q)
i ei,N

))
, (8)

where ei,N is the i-th column of IN and, thus, b(q) − 2b
(q)
i ei,N

is the binary vector that results by flipping the i-th entry of b(q).
If σmax(X(b(q) − 2b

(q)
k ek,N )) > σmax(X(b(q))) (i.e., the best

possible flipping offers an increase to the target metric), then we flip
the k-th entry of b(q) to obtain the update

b(q+1) = b(q) − 2b
(q)
k ek,N . (9)
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Algorithm 2: BF-TUCKER2 for d = 1

Input: X
1: q ← 1, b(q) ← sgn(y); y ∼ N (0N , IN )

2: m′ ← σmax(X(b(q)))
3: While q < Q, do
4: For every i ∈ {1, 2, . . . , N}, do
5: ωi ← σmax(X(b(q) − 2b

(q)
i ei,N ))

6: k ← argmax
i∈{1,2,...,N}

ωi

7: If ωk > m′, m′ ← ωk

8: b(q+1) ← b(q) − 2b
(q)
k ek,N , q ← q + 1

9: (ubf ,vbf )← dsv(X(b(q)))
10: else, break

Output: (ubf,vbf)

Fig. 2. BF-TUCKER2 algorithm for rank-1 L1-TUCKER2 decomposition of
X. dsv(·) returns the dominant singular vectors of its matrix argument.

If there is no k such that flipping the k-th entry of b(q) increases
the metric, then the iterations terminate. Let us denote by Q the
terminating iteration index. Upon termination, the algorithm con-
ducts SVD to X(b

(Q)
opt ) and returns the dominant singular vector pair

(ubf,vbf) as the (approximate) solution to L1-TUCKER2 (d = 1).
Convergence/Termination: By definition, the above procedure

increases the metric of (7) at each bit-flipping iteration. Since the
metric is upper-bounded by σmax(X(bopt)) and takes a finite num-
ber of values (no more than 2N = |{±1}N |), the presented bit-
flipping iterations will converge in finite steps. In fact, our numeri-
cal studies show that the iterations usually converge at Q < N (see
Fig. 4 in Section 5). Therefore, for computational stability, we limit
the number of iterations to Q = 2N (i.e., we terminate iterations at
q = 2N ). BF-TUCKER2 for d = 1 is summarized in Fig. 2.

Complexity: At each iteration, the algorithm calculatesN times
the singular value of a D×M matrix, in order to find the best bit to
flip. Thus, the cost of each iteration isO(DMN min{D,M}) [24].
Limiting Q ≤ 2N , as discussed above, yields a total maximum cost
of O(DMN2 min{D,M}) for BF-TUCKER2 with d = 1 –i.e.,
cost quadratic in N and min{D,M} and linear in max{D,M}.

4.2. BF-TUCKER2 for d ≥ 1

Here, we generalize BF-TUCKER2 for rank-d L1-TUCKER2 de-
composition. For this generalization, we follow the standard sequen-
tial rank-deflation approach. Before we introduce the generalized al-
gorithm, we adjust our notation by defining X

(1)
i

·
= Xi, for every

i ∈ {1, 2, . . . , N}. This new superscript will be useful in presenting
the deflation process; superscript ‘(1)’ means that the matrix has not
been deflated. BF-TUCKER2 for d ≥ 1 will be presented below as
a sequence of d steps.

Step 1: First, we execute the rank-1 BF-TUCKER2 algorithm
of Fig. 2 on {X(1)

i }
N
i=1 to obtain the solution pair (ubf 1,vbf 1).

Step j ∈ {2, 3, . . . , d}: At the beginning of this step, we first
rank-deflate Xi, for every i ∈ {1, 2, . . . , N}, to form X

(j)
i

·
=

P
(p)
u XiP

(p)
v , where P

(p)
u

·
= ID −

∑j−1
p=1 ubf pubf

>
p and P

(p)
v

·
=

ID−
∑j−1

p=1 vbf pvbf
>
p . Then, similar to step 1, we run again rank-1

BF-TUCKER2, this time on the deflated {X(j)
i }

N
i=1, to obtain a new

rank-1 solution pair (ubf j ,vbf j).
At the end of the d-th step, the algorithm returns Ubf =

[ubf 1,ubf 2, . . . ,ubf d] and Vbf = [vbf 1,vbf 2, . . . ,vbf d] as ap-
proximate solutions to rank-d L1-TUCKER2. A pseudocode of
BF-TUCKER2 for d ≥ 1 is offered in Fig. 3.

Algorithm 3: BF-TUCKER2 for d > 1

Input: X, rank d
1: For every j ∈ {1, 2, . . . , d}, do
2: For every i ∈ {1, 2, . . . , N}, do
3: X

(j)
i ← (ID−

∑j−1
p=1 upu

>
p )Xi(IM−

∑j−1
p=1 vpv

>
p )

4: (uj ,vj)← Algorithm2({X(j)
i }

N
i=1)

Output: Ubf ← [u1,u2, . . . ,ud], Vbf ← [v1,v2, . . . ,vd]

Fig. 3. BF-TUCKER2 algorithm for rank-d L1-TUCKER2 decomposition
of X. Algorithm2(·) runs the algorithm of Fig. 2 on its argument.

5. NUMERICAL STUDIES
We commence our studies with an empirical evaluation of the aver-
age number of iterations that are required for the bit-flipping itera-
tions in BF-TUCKER2 of Fig. 2 to converge. We generate size-N
collection of arbitrary matrices, such that, each entry of Xi is drawn
from the standard-Normal distribution N (0, 1), for every i. We
let N vary in {2, 5, 10, 20, 30, 40, 60, 80, 100} and (D,M) vary in
{(10, 10), (30, 30), (50, 50)}, and we run on X the BF-TUCKER2
algorithm of Fig. 2. We compute the mean number of bit-flipping
iterations until convergence, over 1000 independent matrix/tensor
realizations for each value of the triplet (D,M,N). In Fig. 4, we
illustrate the average convergence iteration index versus the number
of data matrices, N . We observe that, on average, fewer than N
iterations are run before convergence, for every value of (D,M).
In addition, for a fixed value of N we see that the mean number of
bit-flipping iterations decreases as D and M increase.

We continue our studies by measuring the Performance Degra-
dation Ratio (PDR) attained in the metric of (2) for d = 1 (i.e.,
with respect to the exact solution provided by the new algorithm of
Fig. 1) by BF-TUCKER2 of Fig. 2 and TPCA-L1 of [14]. For any
approximate solution pair (u,v), PDR is defined as

∆(u,v)
·
=

∑N
i=1 |u

>
optXivopt| − |u>Xiv|∑N
i=1 |u>optXivopt|

. (10)

To that end, we consider a collection of N = 10 arbitrary ma-
trices X1,X2, . . . ,X10 ∈ R20×20. For every i ∈ {1, 2, . . . , 10},
Xi is of the form Xi = Yi + Ni, where Yi = αiuv> is the rank-
1 signal content of Xi (i.e., what we would want to reconstruct)
and Ni is additive zero-mean white Gaussian noise (AWGN) with
per-entry variance 1. We set ‖u‖2 = ‖v‖2 = 1 and draw scal-
ing factor αi from N (0, 16) independently across i. In Fig. 5, we
plot the empirical cumulative distribution function (CDF) of PDR
∆(u,v) for BF-TUCKER2 and TPCA-L1 [14]. We observe that the
proposed BF-TUCKER2 algorithm attains the exact solution (zero
PDR) approximately 85% of the time. On the other hand, TPCA-L1
is optimal about 76% of the time. We also notice that BF-TUCKER2
exhibits PDR of no more than 0.34, with probability 1. On the other
hand, TPCA-L1 may reach PDR 0.46 with non-zero probability.

Next, we proceed with a study on the Mean-Squared reconstruc-
tion Error (MSE) for d = 1 attained by the the proposed exact L1-
TUCKER2 (Fig. 1) and BF-TUCKER2 (Fig. 2). We consider a
collection of 12 arbitrary matrices, X1,X2, . . . ,X12 ∈ R20×20.
Similar to the previous study, for every i ∈ {1, 2, . . . , 12}, Xi =
Yi + Ni where Yi = αiunomv>nom, with ‖unom‖2 = ‖vnom‖2 = 1,
and Ni is zero-mean white Gaussian noise (WGN) with per-entry
variance 1. Here, αi ∼ N (0, 36). unom and vnom capture the com-
mon nominal rank-1 structure of all matrices {Xi}Ni=1. In this study,
we consider additional irregular corruption (sparse outliers) in the
form of additive WGN with variance σ2

c , added to 34 entries in 2
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Fig. 4. Number of iterations to convergence vs. number of data matrices N .
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Fig. 5. CDF of PDR with respect to exact rank-1 L1-TUCKER2.

out of the 12 matrices (i.e., 68 entries out of the total 4800 entries
in X). Noticing that the rank-1 structure (unomv>nom) is the same for
every Xi, we seek to reconstruct the signal content Yi by means of
joint decomposition of {Xi}Ni=1. To that end, we follow one of the
two common approaches below. By the first approach, we vectorize
the matrix samples and obtain the first (d = 1) principal component
(PC) of [vec(X1), vec(X2), . . . , vec(X12)], q. Then, for every i,
we approximate Yi by Ŷi = mat(qq>vec(Xi)), where mat(·)
reshapes its vector argument into a 20×20 matrix, reversing the op-
eration of vec(·). In this approach we calculate q by both PCA (i.e.,
SVD) and L1-PCA [17]. In the second approach, we process the
samples in their natural form, as matrices, analyzing them by rank-
1 TUCKER2-type processing. If (u,v) is the TUCKER2 solution
pair, then we approximate Yi by Ŷi = uu>Xivv>. In this second
approach, we calculate (u,v) by HOSVD [4] , HOOI [2], GLRAM
[12], TPCA-L1 [14], the proposed BF-TUCKER2, and the proposed
exact L1-TUCKER2. Then, for each reconstruction method and
bursty-corruption variance σ2

c ∈ {6, 8, . . . , 22}dB, we measure the

mean of the squared error
∑12

i=1

∥∥∥Yi − Ŷi

∥∥∥2
F

by averaging over
1000 independent realizations of noise and bursty-corruption. In
Fig. 6, we plot the reconstruction MSE for every method, versus
σ2
c . We notice that both methods of the first approach (vectoriza-

tion and PCA-type reconstruction) start from a higher MSE com-
pared to the methods of the second approach (TUCKER2-type re-
construction), arguably, due to the vectorization operation. GLRAM
[12], HOSVD [4], and HOOI [2] exhibit almost identical recon-
struction MSE, higher than that of both proposed methods. Exact
L1-TUCKER2 outperforms every counterpart across the board, ex-
hibiting the strongest outlier resistance. Also, interestingly, despite
its low computational cost, BF-TUCKER2 attains outlier resistance
similar to that of exact L1-TUCKER2.

We conclude our studies with reconstruction MSE evaluation
for d > 1. Specifically, we consider d = 3 and collection of
N = 10 matrices {Xi}10i=1. The i-th matrix is again of form Xi =

6 8 10 12 14 16 18 20 22
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Fig. 6. Rank-1 reconstruction MSE vs. corruption variance σ2
c .
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Fig. 7. Rank-3 reconstruction MSE vs. corruption variance σ2
c .

Yi + Ni where Yi = UnomΣ(i)
3×3

V>nom is the rank-(d = 3) sig-
nal content of Xi. Extending our d = 1 study above, it now holds
that U>nomUnom = V>nomVnom = I3 and Σ(i)

3×3
is a diagonal matrix

with diagonal entries drawn from N (0, 36). We apply HOSVD [4],
HOOI [2], GLRAM [12], TPCA-L1 [14], and BF-TUCKER2 (Fig.
3) on X and by each method we obtain a solution pair (U,V) –
wishing to approximate the nominal basis pair (Unom,Vnom). Then
we approximate Yi by Ŷi = UU>XiVV>. Similar to our previ-
ous study, irregular bursty corruption in the form of sparse additive
WGN is drawn from N (0, σ2

c ) and added to 8 entries in 2 out of
the 10 matrices (16 out of the total 1000 entries in {Xi}10i=1). We
let σ2

c ∈ {6, 8, . . . , 22}dB and, for each method, we plot in Fig.
7 the reconstruction MSE, averaged over 1000 independent noise
and bursty corruption realizations. Interestingly, all methods exhibit
identical (or very similar) reconstruction performance for values of
corruption variance below 12dB. However, as σ2

c increases, all L2-
norm based methods (HOSVD [4], HOOI [2], and GLRAM [12])
become quickly misled by outliers, exhibiting high reconstruction
MSE. TPCA-L1 of [14] outperforms the L2-norm based methods,
exhibiting some robustness. The proposed BF-TUCKER2 algorithm
of Fig. 3 offers even higher robustness, yielding lower MSE than
any counterpart, for σ2

c above 14dB.

6. CONCLUSIONS

We showed for the first time that rank-1 L1-TUCKER2 tensor de-
composition can be solved as a combinatorial optimization over
antipodal-binary variables and provided the first exact solver. Then,
we presented BF-TUCKER2, an efficient bit-flipping algorithm that
approximates the exact solution to rank-1 L1-TUCKER2, attaining
optimality with very high probability. Then, by means of standard
rank-deflation, we generalized BF-TUCKER for rank-d tensor de-
composition. Our numerical studies show that the proposed exact
and efficient algorithms exhibit strong outlier resistance, outper-
forming all tested counterparts.
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