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ABSTRACT
We address the problem of constructing a graph Fourier transform
(GFT) for both undirected and directed graphs (digraphs), which
decomposes graph signals into different modes of variation with
respect to the underlying network. Accordingly, we seek orthonor-
mal bases that yield maximally-spread frequency components in
the graph spectral domain to better capture low, medium and high
frequencies. To that end, we advocate a two-step design whereby
we: (i) find the maximum directed variation (i.e., frequency on a
digraph) a candidate basis vector can attain; and (ii) minimize a
smooth spectral dispersion function over the achievable frequency
range to obtain the desired spread GFT basis. Both steps involve
non-convex, orthonormality-constrained optimization problems,
which are efficiently tackled via a provably convergent, feasible
optimization method on the Stiefel manifold. We illustrate the effec-
tiveness of the novel GFT construction algorithm through numerical
tests on synthetic and real-world graphs.

Index Terms— Graph signal processing, graph Fourier trans-
form, directed graphs, Stiefel manifold optimization, total variation.

1. INTRODUCTION
Network data indexed by the nodes of a graph are becoming in-
creasingly ubiquitous, with examples ranging from measurements
of neural activities at different regions of the brain [1, 2], to eco-
nomic activity observed over a network of production flows between
industrial sectors [3]. It is only natural that complex signals with
irregular structure become of interest, and the goal of graph signal
processing (GSP) is to develop algorithms that leverage this rela-
tional structure; see [4, 5] for tutorial treatments. From this vantage
point, signal processing tasks such as filtering [2, 5–8], sampling
and reconstruction [3, 9, 10], spectrum estimation [11], (blind) filter
identification [12,13], as well as signal representations [14,15], have
been reexamined under the purview of GSP.

An instrumental GSP tool is the graph Fourier transform (GFT),
which decomposes a graph signal into orthonormal components de-
scribing different modes of variation with respect to the graph topol-
ogy. Here we aim to generalize the GFT to directed graphs (di-
graphs); see also [16–18]. We build on a novel notion of signal
variation (frequency) over digraphs and find the maximum possi-
ble frequency (fmax) that a unit-norm graph signal can achieve. We
design a digraph (D)GFT such that the resulting frequencies (i.e.,
the directed variation of the sought orthonormal bases) distribute as
evenly as possible across [0, fmax]. Beyond offering parsimonious
representations of slowly-varying signals on digraphs, a DGFT with
spread frequency components can facilitate more interpretable fre-
quency analyses and aid filter design in the graph spectral domain.

To position our contributions in the context of related work, we
first introduce some basic GSP notions and terminology. We con-
sider a weighted digraph G = (V,A), where V is the set of nodes
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(i.e., vertices) with cardinality |V| = N , and A ∈ RN×N is the
graph adjacency matrix with entry Aij denoting the edge weight
from node i to node j. We assume that the graph is connected
and has no self loops; i.e. Aii = 0, and the edge weights are non-
negative (Aij ≥ 0). For an undirected graph A is symmetric, and
the positive semi-definite combinatorial Laplacian matrix is L :=
D−A, where D is the diagonal degree matrix withDii =

∑
j Aji.

A graph signal x : V 7→ RN can be represented as a vector of size
N , where component xi denotes the signal value at node i ∈ V .
Related work. For undirected graphs, the GFT of signal x is often
defined as x̃ = VTx, where V := [v1, . . . ,vN ] comprises the
eigenvectors of the Laplacian [4, 8]. Defining the total variation of
the signal x with respect to the Laplacian L as

TV(x) = xTLx =

N∑
i,j=1,j>i

Aij(xi − xj)2 (1)

then it follows that the total variation of eigenvector vk is TV(vk) =
λk, the kth Laplacian eigenvalue. Hence, eigenvalues 0 = λ1 <
λ2 ≤ . . . ≤ λN can be viewed as graph frequencies, indicating
how the GFT bases vary over the graph. Note that there may be
more than one eigenvector corresponding to a graph frequency in
case of having repeated eigenvalues. Extensions of the combinato-
rial Laplacian to digraphs have also been proposed [19]. However,
eigenvectors of the directed Laplacian generally fail to yield spread
frequency components as we illustrate in Section 4. A more general
GFT definition is based on the Jordan decomposition of adjacency
matrix A = VJV−1, where the frequency representation of graph
signal x is x̃ = V−1x [17]. While valid for digraphs, the associated
notion of signal variation in [17] does not ensure that constant sig-
nals have zero variation. Moreover, V is not necessarily orthonor-
mal and Parseval’s identity does not hold. From a computational
standpoint, obtaining the Jordan decomposition is expensive and of-
ten numerically unstable; see also [20]. Recently, a fresh look to
the GFT for digraphs was put forth in [18] based on minimization
of the (convex) Lovász extension of the graph cut size, subject to
orthonormality constraints on the desired bases. The optimization
procedure in [18] is computationally expensive due to repeated sin-
gular value decompositions, and can be infeasible for large graphs.
Also, the definition of cut size (and its Lovász extension which can
be interpreted as a graph directed variation measure) is based on a
bipartition of the graph, while the network may have multiple (more
than two) clusters. While the GFT bases in [18] tend to be constant
across clusters of the graph, in general they may fail to yield signal
representations capturing different modes of signal variation with re-
spect to G; see [16, Remark 1] for an example of this phenomenon.
Contributions. Here we design a DGFT with the following desir-
able properties: P1) The bases offer notions of frequency and signal
variation over digraphs which are also consistent with those used
for subsumed undirected graphs. P2) Frequencies are designed to
be (approximately) equidistributed in [0, fmax], to better capture low,
middle, and high frequencies. P3) Bases are orthonormal so Parse-
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val’s identity holds and signal energy is preserved in the vertex and
graph frequency domains. Moreover, the inverse DGFT can be eas-
ily computed via inner products. In [16] we made a first attempt to
construct a DGFT basis with the aforementioned properties P1)-P3),
through a greedy basis selection approach with performance guaran-
tees. Here instead we leverage a feasible method for optimization
with orthonormality constraints (outlined in Section 3), to directly
minimize a smooth measure of spectral dispersion over the Stiefel
manifold formulated in Section 2. The novel algorithm is scalable
and offers convergence guarantees to stationary points.

2. PRELIMINARIES AND PROBLEM STATEMENT
In this section we first introduce an extended notion of signal varia-
tion and graph frequencies for digraphs. Then, we state the problem
as one of finding orthonormal bases with evenly distributed frequen-
cies in the graph spectral domain.
Signal variation on digraphs. Our goal is to find N orthonormal
bases capturing different modes of variation over the graph G. We
collect these desired bases in a matrix U := [u1, . . . ,uN ] ∈ RN×N ,
where uk ∈ RN represents the kth frequency component. For undi-
rected graphs, the quantity TV(x) in (1) measures how signal x
varies over the network with Laplacian L. This motivates defining a
more general notion of signal variation for digraphs, called directed
variation (DV), as (cf. [16, eq. (2)]; see also [18])

DV(x) :=

N∑
i,j=1

Aij [xi − xj ]2+, (2)

where [x]+ := max(0, x). To gain insights on (2), consider a graph
signal x ∈ RN on digraph G and suppose a directed edge represents
the direction of signal flow from a larger value to a smaller one.
Thus, an edge from node i to node j (i.e., Aij > 0) contributes
to DV(x) only if xi > xj . Notice that if G is undirected, then
DV(x) ≡ TV(x). Analogously to the undirected case, we define the
frequency fk := DV(uk) as the directed variation of the basis uk.
Challenges facing spread frequency components. Similar to the
discrete spectrum of periodic time-varying signals, by designing the
bases we would ideally like to haveN equidistributed graph frequen-
cies forming an arithmetic sequence

fk = DV(uk) =
k − 1

N − 1
fmax, k = 1, . . . , N (3)

where fmax is the maximum variation of a unit-norm signal on G.
However, attaining the exact frequencies in (3) may be im-

possible for irregular graph domains. This can be clearly seen
for undirected graphs, where one has the additional constraint
that the summation of frequencies is constant, since

∑N
k=1 fk =∑N

k=1 TV(uk) = trace(L).
Moreover, one needs to determine the maximum frequency fmax

that a unit-norm basis can attain. For undirected graphs, one has

fumax = max
‖u‖=1

TV(u) = max
‖u‖=1

uTLu = λmax, (4)

where λmax is the largest eigenvalue of the Laplacian matrix L.
However, finding the maximum directed variation is in general
challenging, since one needs to solve the (non-convex) spherically-
constrained problem

umax = argmax
‖u‖=1

DV(u) and fmax := DV(umax). (5)

Notice that fmax is upper-bounded by λmax. This is because dropping
the direction of any edge can not decrease the directed variation.

Going back to the design of U, to cover the whole spectrum of
variations one would like to set u1 = umin := 1√

N
1N (normalized

all ones vector of length N ) and uN = umax. Next we state a
criterion for the design of the remaining bases.
Problem statement. Consider the spectral dispersion function

δ(U) :=

N−1∑
i=1

[DV(ui+1)− DV(ui)]
2 (6)

that measures how well spread the corresponding frequencies are
over [0, fmax]. Having fixed the first and last columns of U, it
follows that the dispersion function δ(U) is minimized when the
free DV values are selected to form an arithmetic sequence between
DV(u1) = 0 and DV(uN ) = fmax, consistent with our design goal.

All in all, rather than going after frequencies exactly equidis-
tributed as in (3), our idea is to minimize the spectral dispersion

min
U

N−1∑
i=1

[DV(ui+1)− DV(ui)]
2

subject to UTU = I

u1 = umin

uN = umax.

(7)

Problem (7) is feasible since one can show that umax [cf. (5)]
is orthogonal to the constant vector umin = 1√

N
1N

1. But finding
the global optimum of (7) is challenging due to the non-convexity
arising from the orthonormality (a.k.a. Stiefel manifold) constraints.
The objective function δ(U) is smooth though, and so there is hope
of finding good stationary solutions by leveraging recent advances in
manifold optimization. In the next section we build on an effective
feasible method for optimization with orthogonality constraints [22],
to solve judiciously modified forms of problems (5) and (7) to di-
rectly find the maximum frequency along with the disperse bases.

3. MINIMIZING DISPERSION IN A STIEFEL MANIFOLD
Here we show how to find a disperse Fourier basis for signals on
digraphs, by bringing to bear a feasible method for optimization of
differentiable functions over the Stiefel manifold [22]. Specifically,
we take a two step approach whereby: i) we find fmax and its cor-
responding basis umax by solving (5); and ii) we solve (7) to find
well-spread frequency components U = [u1, · · · ,uN ] satisfying
u1 = umin = 1√

N
1N and uN = umax. Similar feasible methods

have been also successfully applied to a wide variety of applications,
such as low-rank matrix approximations, Independent Component
Analysis, and subspace tracking, to name a few [23].

The general iterative method of [22] deals with an orthogonality
constrained problem of the form

min
U∈Rn×p

F(U), subject to UTU = I, (8)

where F(U) : Rn×p → R is assumed to be differentiable, just like
δ(U) in (6). Given a feasible point Uk at iteration k and gradient
Gk = ∇F(Uk), one follows the update rule

Uk+1(τ) =
(
I +

τ

2
Bk

)−1 (
I− τ

2
Bk

)
Uk, (9)

where Bk := GkU
T
k −UkG

T
k is a skew-symmetric (BT

k = −Bk)
projection of the gradient onto the constraint’s tangent space. Update
rule (9) in known as the Cayley transform which preserves orthogo-
nality (UT

k+1Uk+1 = I), since (I+ τ
2
Bk)−1 and I− τ

2
Bk commute.

1A proof is omitted here due to lack of space, details can be found in [21].
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Algorithm 1 Feasible Method for Spectral Dispersion Minimization

1: Input: Adjacency matrix A, regularization parameter λ > 0
and tolerance ε > 0.

2: Find umax (details in [21, Alg. 1]) and set umin = 1√
N

1N
3: Initialize k = 0 and orthonormal U0 at random.
4: repeat
5: Compute gradient Gk ∈ RN×N from (11).
6: Set Bk = GkUk

T −UkGk
T .

7: Find τk chosen via the Armijo-Wolfe conditions.
8: Update Uk+1(τk) = (I + τk

2
Bk)−1(I− τk

2
Bk)Uk.

9: k ← k + 1.
10: until ‖Uk −Uk−1‖F ≤ ε
11: Return Û = Uk.

Noteworthy properties are: i) Uk+1(0) = Uk; ii) Uk+1(τ) in (9) is
smooth in τ ; and iii) d

dτ
Uk+1(τ) is the projection of −Gk into Bk

at Uk. Most importantly, iii) ensures that the update (9) is a descent
path for a proper step size τ ; see [22] for more details. In particular,
one such step size τ can be obtained through a curvilinear search sat-
isfying the Armijo-Wolfe conditions [24]. Theorem 2 in [22] asserts
that the overall procedure converges to a stationary point of F(U),
while generating feasible points at every iteration.
Finding umax and fmax. As the first step to find the DGFT bases,
we obtain fmax by using the feasible approach to minimize −DV(u)
over {u | uTu = 1} [cf. (5)]. The gradient ḡ := ∂

∂u
DV(u) ∈ RN

has entries given by (A.i is the ith column of A, Ai. the ith row)

ḡi = 2
[
AT
.i(u− ui1N )+ −Ai.(ui1N − u)+

]
, 1 ≤ i ≤ N.

The algorithm initiates at a random unit-norm vector and then via
(9) it takes a descent path towards a stationary point (detailed it-
erations can be found in [21, Alg. 1]). It is often prudent to run
the algorithm multiple times using random initializations, and retain
the solution that yields the least cost. Although the algorithm only
guarantees converges to stationary points, in practice it tends to find
fmax = DV(umax) exactly if the number of initializations is chosen
properly; see Section 4. The limiting basis umax is then used for the
spectral dispersion minimization step.
Spectral dispersion minimization. As the second and final step, we
aim at finding the orthonormal basis U that minimizes the spectral
dispersion (6). To write the optimization problem (7) in the form of
(8) and apply the previously outlined feasible method, we penalize
the objective with a measure of the constraint violations to obtain

min
U

δ(U) +
λ

2

(
‖u1 − umin‖22 + ‖uN − umax‖22

)
subject to UTU = I, (10)

where λ is made large enough to ensure u1 = umin and uN =
umax. The overall procedure is tabulated under Algorithm 1, where
the gradient matrix G := ∂

∂U
δ(U) ∈ RN×N has columns given by

g1 = [DV(u1)− DV(u2)] ḡ(u1) + λ(u1 − umin),

gi = [−DV(ui+1) + 2DV(ui)− DV(ui−1)] ḡ(ui), i ∈ [2, N − 1]

gN = [DV(uN−1)− DV(uN )] ḡ(uN ) + λ(uN − umax). (11)

Once more, it is convenient to run the algorithm multiple times and
retain the least disperse DGFT basis.

4. NUMERICAL RESULTS
To assess the performance of the proposed algorithm, we construct
the GFT bases for two different digraphs and compare their resulting
modes of variation with existing approaches.
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Fig. 1: First and last three DGFT bases obtained using Algorithm 1.
Respective DV values (frequencies) are shown as well.

Method Dispersion
Directed Laplacian [19] 0.256

PAMAL [18] 0.301
Submodular Greedy Algorithm [16] 0.118

Feasible Method (Alg. 1) 0.076

Table 1: Spectral dispersion δ(U) of obtained bases U using differ-
ent algorithms for the synthetic graph shown in Fig. 1.

Synthetic graph. First, using Algorithm 1 we construct the DGFT
for an unweighted digraph G with N = 15 nodes shown in Fig. 1,
and compare it with the GFT given in [18], the eigenvectors of the
directed Laplacian defined in [19], and the DGFT obtained by sub-
modular greedy optimization in [16]. To define the directed Lapla-
cian in [19], consider a random walk on the graph with transition
probability matrix P = D−1

out A, where Dout is the diagonal matrix
of node out-degrees. Let Π = diag(π) be the diagonal matrix with
the stationary distribution π of the random walk on the diagonal.2

Using these definitions, the directed Laplacian is given by

Q = Π− ΠP + PTΠ

2
. (12)

Fig. 1 shows the results from Algorithm 1, after finding the last ba-
sis umax through a similar procedure [i.e. feasible method for (5)].
Each subplot shows one basis vector (column) of the resulting U,
and the corresponding DV is calculated using (2). It is apparent
that the first bases exhibit significantly less variability than the three
higher frequency components.

To corroborate that the resulting DGFT bases are well dis-
tributed in the graph spectral domain, Fig. 2a depicts the distribution
of all the frequencies for the four examined algorithms. In Fig. 2a,
each vertical line indicates the directed variation (frequency) asso-
ciated with a basis. As expected, the proposed approach – which
directly optimizes the spectral dispersion metric – yields a set of
almost equidistributed graph frequencies. As additional figure of
merit, we first rescale the DV values to the [0, 1] interval and calcu-
late their dispersion using (6). The resulting values are reported in
Table 1, which confirms that Algorithm 1 yields a better frequency
spread (i.e., smaller dispersion). While other approaches may find
repeated frequencies (as can be inferred from the total number of
vertical lines in Fig. 2a), the proposed DGFT construction returnsN
well dispersed frequencies.

We also use the Monte-Carlo method to study the convergence
properties of our algorithms. In Fig. 3 (top) we show the evolution of
iterates for the feasible method in [22], when used to find the max-
imum DV (i.e., fmax) for the same 15-node graph. We do so for
100 different (random) initializations and report the median as well
as the first and third quartiles versus the number of iterations. We

2Vector π is a stationary distribution for the random walk if π = PT π.
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Fig. 2: (a) Comparison of directed variations for different methods in the synthetic graph in Fig. 1: eigenvectors of the directed Laplacian
matrix introduced in [19], augmented Lagrangian method of [18] (PAMAL), submodular greedy algorithm in [16], and feasible method
(Algorithm 1). Colored boxes show the difference between two consecutive frequencies for each method. Apparently, Algorithm 1 yields
the most equidistributed graph frequencies. (b) Comparison of directed variations in the brain graph: similar to (a) except for the PAMAL
algorithm which did not converge in a feasible time.
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Fig. 3: (top) Convergence behaviour of the proposed feasible method
for finding the maximum directed variation fmax. The boxes show the
median and the 25th and 75th percentiles of fmax vs. the number of
iterations, obtained by running 100 Monte-Carlo simulations based
on independent initializations. (bottom) Likewise, but when using
Algorithm 1 to minimize the spectral dispersion δ(U) in (6).

observe that all the realizations converge [22, Theorem 2], but there
is a small variation among the limiting values. This is expected be-
cause the feasible method is not guaranteed to converge to the global
optimum of the non-convex problem (7). It is worth mentioning that
after about 10 iterations, the exact value of fmax is achieved by a
quarter of the realizations (and this improves to half of the realiza-
tions with about 30 iterations). Similarly, Fig. 3 (bottom) shows the
median, first, and third quartiles of the dispersion function iterates
δ(Uk), when minimized using Algorithm 1. Again, 100 different
Monte-Carlo simulations are considered and we observe that all of
them converge to limiting values with small variability. This means
that in practice, we can run Algorithm 1 with different random ini-

tializations and retain the most spread frequency components.
Brain graph. We also consider a real brain graph representing the
anatomical connections of the macaque cortex, which was studied
e.g. in [1,25]. The network consists ofN = 47 nodes and 505 edges
(among which 121 links are directed). The vertices represent differ-
ent hubs in the brain, and the edges capture directed information flow
among them. Fig. 2b compares the distribution of frequencies for the
different methods, except for the PAMAL algorithm which did not
converge within a reasonable time. Again, our proposed algorithm
outperforms other approaches in terms of finding well dispersed and
non-repetitive frequencies, which demonstrates its potential effec-
tiveness for filtering of brain signals and enhanced interpretability of
graph frequency analyses [2].

5. CONCLUSION

We considered the problem of finding an orthonormal set of graph
Fourier bases for digraphs, which is also naturally applicable to undi-
rected networks. First, we introduced a measure of directed variation
to capture the notion of frequency on digraphs. Our DGFT design is
to construct orthonormal bases that span the entire frequency range
and for which frequency components are as evenly distributed as
possible while taking into account the network structure. To that
end, we defined a spectral dispersion function to quantify the quality
of any feasible solution compared to our ideal design, and minimized
this criterion over the Stiefel manifold. To tackle the resulting non-
convex problems, we used a feasible method for optimization with
orthogonality constraints, which offers provable convergence guar-
antees to the stationary points. The overall pipeline for finding de-
sirable bases is validated on synthetic and structural brain networks.

With regards to future directions, the complexity of finding the
maximum frequency (fmax) on a digraph is an interesting open ques-
tion. If NP-hard, it will be interesting to find the best achievable
approximation factor (a 1/2-approximation was given in [16]). Fur-
thermore, it would be a significant improvement if we can bound the
optimality gap for the stationary solution of the proposed algorithm.
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Kovačević, “Discrete signal processing on graphs: Sampling
theory,” IEEE Transactions on Signal Processing, vol. 63, no.
24, pp. 6510–6523, 2015.

[10] N. Perraudin and P. Vandergheynst, “Stationary signal process-
ing on graphs,” IEEE Transactions on Signal Processing, vol.
65, no. 13, pp. 3462–3477, July 2017.

[11] Antonio G. Marques, Santiago Segarra, Geert Leus, and Ale-
jandro Ribeiro, “Stationary graph processes and spectral esti-
mation,” IEEE Transactions on Signal Processing, vol. 65, no.
22, pp. 5911–5926, Nov. 2017.

[12] Rasoul Shafipour, Santiago Segarra, Antonio G. Marques, and
Gonzalo Mateos, “Network topology inference from non-
stationary graph signals,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2017.

[13] Santiago Segarra, Gonzalo Mateos, Antonio G. Marques, and
Alejandro Ribeiro, “Blind identification of graph filters,” IEEE
Transactions on Signal Processing, vol. 65, no. 5, pp. 1146–
1159, 2017.

[14] Dorina Thanou, David I. Shuman, and Pascal Frossard,
“Learning parametric dictionaries for signals on graphs,” IEEE
Transactions on Signal Processing, vol. 62, no. 15, pp. 3849–
3862, 2014.

[15] Xiaofan Zhu and Michael Rabbat, “Approximating signals
supported on graphs,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2012, pp.
3921–3924.

[16] Rasoul Shafipour, Ali Khodabakhsh, Gonzalo Mateos, and Ev-
dokia Nikolova, “A digraph Fourier transform with spread fre-
quency components,” in Proc. of IEEE Global Conf. on Signal
and Information Processing, Nov 2017.

[17] Aliaksei Sandryhaila and José M. F. Moura, “Discrete signal
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