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ABSTRACT

Retrieving spoken content with spoken queries, or query-by-example
spoken term detection (STD), is attractive because it makes possi-
ble the matching of signals directly on the acoustic level without
transcribing them into text. Here, we propose an end-to-end query-
by-example STD model based on an attention-based multi-hop
network, whose input is a spoken query and an audio segment
containing several utterances; the output states whether the audio
segment includes the query. The model can be trained in either a su-
pervised scenario using labeled data, or in an unsupervised fashion.
In the supervised scenario, we find that the attention mechanism and
multiple hops improve performance, and that the attention weights
indicate the time span of the detected terms. In the unsupervised
setting, the model mimics the behavior of DTW, and it performs as
well as DTW but with a lower run-time complexity.

Index Terms— Attention-based Multi-hop Network

1. INTRODUCTION

Retrieving spoken content with spoken queries, also known as query-
by-example spoken term detection (STD) [1–6], is attractive because
hand-held or wearable devices make spoken queries a natural choice.
The most intuitive way to search over spoken content for a spoken
query is to directly match the audio signals to find those audio snip-
pets that sound like the spoken query, and dynamic time warping
(DTW) [7] is widely used. Despite DTW’s wide use, it has several
drawbacks. As typical DTW does not have trainable parameters,
even in an online system that collects the training data from user
feedback, the data cannot be directly used to improve the algorithm.
In addition, the time complexity of DTW is usually proportional to
the product of the lengths of the spoken queries and audio segments,
which for real applications is usually excessive.

Query-by-example STD by representing each word segment as
a vector [8–12] is much more efficient than the conventional Dy-
namic Time Warping (DTW) based approaches, because only the
similarities between two single vectors are needed, in additional to
the significantly better retrieval performance obtained [11]. Audio
segment representation is still an open problem. Several approaches
have been successfully used in STD [9,13–15], but these approaches
were developed primarily in more heuristic ways, rather than deep
learning. By learning RNN with an audio segment as the input
and the corresponding word as the target, the outputs of the hid-
den layer at the last few time steps can be taken as the represen-
tation of the input segment [16]. Audio segment embedding can
also be jointly learned with their corresponding character sequences
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by multi-view approach [17]. Sequence-to-sequence Autoencoder
is used to represent variable-length audio segments by vectors with
fixed dimensionality, which is referred to as Audio Word2Vec [11].
This previous approach assumes that speech segments to be retrieved
have been pre-segmented at word boundaries, which is not realis-
tic. However, it was shown that neural embeddings learned from
pre-segmented audio can be applied for embedding arbitrary seg-
ments [17]. In this paper, we use attention mechanism to locate the
time span of the input query in the utterances to be retrieved, so word
boundary segmentation is not needed at both the training and testing
stages, and attention is shown to improve the query-by-example per-
formance.

The target of this paper is to develop an end-to-end deep learning
model for query-by-example STD. On STD with text query, end-
to-end approaches have been explored, in which a function which
can map the acoustic features of an utterance and a text query to a
confidence score is developed. Along this direction, encouraging re-
sults have been obtained based on structured support vector machine
(SVM) [18–20]. However, learning structured SVM is computation-
ally intensive, so this approach is hard to scale. An end-to-end deep
learning based system for text query STD has been proposed [21].
Attention mechanism and multiple hops are not used in the model,
which is different from the proposed approach in this paper.

In this paper, we propose an end-to-end query-by-example STD
model. The model is an attention-based multi-hop network, the in-
put of which is a query and an audio segment (containing several
utterances), and the output a confidence score representing whether
the audio segment includes the query term. In the network, the input
spoken query is represented as a vector by an LSTM encoder. We
use the attention mechanism to locate the time span of the query term
in the audio segment. Similar to query expansion, multiple hops are
used to update the spoken queries via information extracted from the
audio segment. Then a key term detector determines whether the
query term exists in the input audio segment. These network com-
ponents are all learned end-to-end, and the model can be learned in
a supervised or unsupervised setting. In a supervised setting, the
model is learned from a set of labeled data, which can be collected
by user feedback in real applications. In an unsupervised setting, the
neural network mimics the behavior of DTW, and it performs as well
as DTW but with a lower run-time complexity.

2. FRAMEWORK AND TRAINING SCENARIO

Shown in the upper half of Fig 1 is the framework of query-by-
example STD using an end-to-end network. The network input is
the spoken query and an audio segment in the database to be re-
trieved. Both the spoken query and the audio segment are repre-
sented by acoustic features such as MFCCs. In this paper, the audio
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Fig. 1. Framework and training scenarios

segments cover several utterances, and as such are much longer than
the spoken queries. The output of the network is a scalar. The scalar
represents the confidence that the term in the spoken query exists in
the audio segment. Given a spoken query, the system ranks the au-
dio segments in the database according to the confidence scores, and
yields the search results. It may seem that the proposed approach
only extracts the target audio segments as opposed to locating the
time spans of the query terms in the segments; in truth, the time
spans are determined based on the attention mechanism in the net-
work. This is shown in the experimental results.

As shown in the lower half of Fig. 1, the network is trained in
two different scenarios. In the first scenario (left lower corner), la-
beled examples are collected, each pair of which is composed of
a spoken query and an audio segment, including a label indicat-
ing whether the segment contains the term in the spoken query. In
this case, network training is cast as a binary classification problem.
Since labeled data is used in the first scenario, the network achieves
better performance than query-by-example approaches such as DTW
that use no labeled data. In the second scenario (right lower corner),
given a set of query-segment pairs, an existing query-by-example
STD approach referred to here as the teacher approach (any method
with good performance could be used here) assigns a score to each
example pair. This score represents the confidence that the segment
includes the query. The network thus learns to predict the confi-
dence scores of the teacher approach given the same example pairs;
this is hence a regression task. In the second scenario, as no extra la-
beled data is needed, it is unsupervised. Since the network is learned
from an existing approach, it cannot outperform its teacher. How-
ever, if the network performance is equivalent to that of the teacher
approach, and if the network is faster than the teacher, it may be
reasonable to use the network at testing time instead of the teacher
approach.

3. ATTENTION-BASED MULTI-HOP NETWORK

In this section we describe the model architecture of the attention-
based multi-hop network.

3.1. Query Representation

Fig. 2 (A) illustrates the encoding of the input spoken query into
a vector representation VQ. The input query is a sequence of T
vectors, x1, x2, ..., xT , each vector xi of which is an acoustic fea-

Fig. 2. Attention mechanism

ture vector such as MFCC. In Fig. 2 (A), a long short-term memory
(LSTM) network [22] takes one frame from the input spoken query
sequentially at a time. After going through all the frames in the
query, the query vector representation VQ is the hidden layer output
of the LSTM network at the last time index.

3.2. Audio Segment Representation with Attention

Fig. 2 (B) shows an audio segment (containing several utterances)
in the database to be retrieved; although this is a lengthy acoustic
feature sequence, we show only eight features for simplicity. The
LSTM in Fig 2 (B) goes through the whole document and encodes
each frame1. The vector representation of the t-th frame St is the
hidden layer outputs of the LSTM network. This process can be
completed off-line, before the spoken query is submitted.

Then the attention value αt for each time index t is the cosine
similarity between the query vector VQ (obtained in Fig. 2 (A)) and
the vector representation St of each frame, αt = St � VQ, where
symbol � denotes cosine similarity between two vectors. We nor-
malize attention values αt as α′

t. The score list is normalized using
the softmax activation function:

α′
i =

exp(αi)∑T
i=1 exp(αi)

(1)

This has been widely used in many existing neural attention frame-
works [23–26]. Then vectors St from the LSTM network for every
frame in the audio segment are weighted with this normalized atten-
tion value α′

t and summed to yield the segment representation vector
VS =

∑
t α

′
tSt, which is used to determine the confidence score for

spoken query VQ. To ensure a time complexity linear to the length of
the input audio segment, we do not use more sophisticated attention
models [27]; thus the approach is faster than DTW.

3.3. Hopping

Fig. 3 illustrates hopping: the input spoken query is first converted
into a vector VQ1 by the module in Fig. 2 (A), after which the mod-
ule in (B) uses this VQ1 to compute the attention values αt to obtain
the story vector VS1 . Then VQ1 and VS1 are summed to form the
new question vector VQ2 . This process is the first hop (hop 1). The
output of the first hop VQ2 can be used to compute the new atten-
tion values to obtain a new story vector VS2 . This can be seen as

1The LSTMs used in Figs 2 (A) and (B) are the same.
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Fig. 3. The hopping operation

relevance feedback [13, 28], where the machine goes over the audio
segment again, extracting information to expand the query to form
a new query vector. Again, VQ1 and VS1 are summed to form VQ2

(hop 2). After n hops (n is predefined), the output of the last hop
VSn is used to calculate the confidence score.

3.4. Keyword Detection

Finally, as shown in the upper half of Fig 3, a detector determines
the confidence score based on query vector representation VQ and
utterance vector representation VSn . Here we use three ways to cal-
culate this score: (1) Use the cosine similarity between VQ and VSn

as the score; (2) Use the detector – a connected feedforward neuron
network – taking VQ and VSn as input, and output a scalar as the
confidence score; (3) Combine approaches (1) and (2): a neural net-
work takes as input the query vector VQ, utterance vector VSn , and
cosine similarity, and outputs a score.

4. EXPERIMENTAL SETUP

We used the LibriSpeech corpus [29] as the data for the experi-
ments. To train the attention-based multi-hop network, some query-
segment pairs were needed as training examples. 70,000 training ex-
amples were used in the experiments, including 500 different spoken
queries; all audio segments were from the LibriSpeech train-clean-
360 set. In the supervised scenario, the label for each example (a
query-segment pair) specified whether the audio segment contains
the spoken query2. In the unsupervised scenario, each example is
labeled using the score from the DTW algorithm [30]. There are
three testing sets. In all testing sets, the audio segments were from
the train-other-500 set in LibriSpeech; thus the audio segments in
the training and testing sets did not overlap. As described below, the
spoken queries were different.

• Testing Set 1: There were 1,500 query-segment pairs, includ-
ing 30 different spoken queries (each query has 50 examples
in average). The spoken queries were all from the training
set.

• Testing Set 2: As with testing set 1, this set also had 1,500
query-segment pairs with 30 different spoken queries (each
query has 50 examples in average). The spoken queries in
this set had the same text form as testing set 1, but did not
come from the training set.

2This is easily determined using the manual transcriptions of the audio
segments available from the LibriSpeech corpus.

• Testing Set 3: This set had 10,000 query-segment pairs with
100 different spoken queries (each query has 100 examples
in average). In this set, the spoken queries were not from the
training set, and the text form of the spoken queries never
appeared in the training queries.

All the spoken queries corresponds to single words, but the proposed
approach can also be applied on phrases. 39-dimension MFCCs
were used as the acoustic features. Both attention-based multi-hop
network and DTW baseline used the same set of features, so they
can be fairly compared. Mean average precision (MAP) was used as
the evaluation measure.

The network structure and hyper-parameters were set as below
without further tuning if not specified. The LSTM encoder consisted
of two hidden layers with 128 LSTM units. The networks were
trained for 100 epochs using ADAM [31]. The keyword detector was
a network with four hidden layers with 128, 64, 32 and 2 neurons re-
spectively. In the supervised scenario, the attention-based multi-hop
network was a binary classifier trained using cross-entropy loss; in
the unsupervised scenario, mean square error was the loss function.

5. EXPERIMENTAL RESULTS

In Sections 5.1, 5.2 and 5.3, we consider the supervised scenario.
The results of the unsupervised scenario are presented in Section 5.4.

5.1. Attention-based Model

Table 1. Results of attention-based network with a single hop. Rows
(A) and (B) are baselines. Part (C) is attention-based networks. NN,
Cos, and NN+Cos are respectively the three detectors from Sec-
tion 3.4.

Approach Test 1 Test 2 Test 3
(A): DTW 0.6173 0.5778 0.5678

(B): Network without Attention 0.5935 0.5563 0.5468
(C): (1) NN 0.6523 0.6246 0.5754

Attention-based (2) Cosine 0.6331 0.6043 0.5746
Network (3) NN+Cos 0.6268 0.6370 0.5759

(D): (A)+(C)
(1) NN 0.6720 0.6340 0.5868
(2) Cosine 0.6433 0.6002 0.5843
(3) NN+Cos 0.6451 0.6309 0.5808

Table 1 shows the results of the attention-based model with a sin-
gle hop. Rows (A) and (B) are two baselines: Row (A) is the MAP
of the search results ranked according to DTW similarities on the
three testing sets, and row (B) is the model without attention mecha-
nism. We used an LSTM to encode both the spoken query and audio
segment as a vector representation by taking the hidden layer output
of the LSTM network at the last time index. Next, we input to the
neural network key term detector the query vector and audio seg-
ment representations. The detector then outputs a score representing
the confidence that the query appears in the audio segment. We find
that without the attention mechanism, even though the networks are
learned from labeled training data, they are outperformed by DTW,
which needs no training data (rows (B) v.s. (A)).

We observe that the results of attention-based networks outper-
form those without attention and DTW (part (C) v.s. rows (A), (B)).
From Table 1, we note that compared to DTW, the attention model
yields larger improvements on test sets 1 and 2. This shows that even
though the training and testing queries are from different speakers,
the attention-based model still learns the keyword acoustic patterns,
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which are speaker-independent. However, the attention-based net-
work yields little improvement on test set 3; it is more difficult for
the network to transfer what it has learned to keywords it has never
seen before. We evaluated the three detectors mentioned in Sec-
tion 3.4, denoted in Table 1 as NN, Cos, and NN+Cos. Regardless
of the model, using the network for keyterm detection always works
better than simply computing cosine similarity (NN v.s Cos). Taking
cosine similarity as another input to the keyterm detection network
(NN+Cos) does not improve performance on test set 1, but does im-
prove the performance in some cases on test sets 2 and 3.

Part (D) shows the integration of the DTW output in row (A)
and the attention-based model in part (C), for which the integration
weight is 0.4 for DTW and 0.6 for the attention-based model. We
observe improvements for test sets 1 and 3. This shows that DTW
and the attention-based model are complementary.

5.2. Attention analysis

Fig. 4. Time differences between maximum attention weight and
end of query.

In spoken term detection, we seek to determine not only whether
the query term exists in the audio segments, but sometimes also – if
they exist – the time spans of these query terms within the segments.
We find that the attention weights reveal the time spans of the query
terms. In Fig. 4 we present the analysis of test set 1. For all query
terms and for the audio segments containing the query terms, we
compute the time difference between the position with the highest
attention weight and the end of the query. The horizontal axis in
the figure shows the time difference, while the vertical axis is the
percentage among all the audio segments considered. From the fig-
ure, we find that distances under one second accounted for 25% of
the cases; that is, in these cases the attention mechanism located the
query term with less than a one-second error. Further analysis in the
enclosed subfigure shows the time duration from 0 to 1 seconds. We
find that most of the time differences fall between 0.1 and 0.5; this
shows that the highest peak of the attention weights are quite close
to the query word. This suggests that attention yields a precise focus
on the end location of the query.

5.3. Multiple Hopping

Table 2 shows the results when using multiple hops to generate au-
dio segment representations. The results in row (B) are the results

Table 2. Multiple-hop results
Test set 1 Test set 2 Test set 3

(A): DTW 0.6173 0.5778 0.5678
(B): 1-hop 0.6523 0.6246 0.5754
(C): 2-hop 0.6472 0.6430 0.5842
(D): 3-hop 0.6676 0.6404 0.5837
(E): 4-hop 0.6417 0.6476 0.5792

(F): (A)+(D) 0.6789 0.6430 0.5830

without multiple hops, also shown in row (C-1) of Table 1; the re-
sults with 2 to 4 hops are those in rows (C) to (E). Multiple hops
outperform single hops (rows (C) to (E) v.s. (B)), except for 1 and
3 hops on test set 1. This shows that hopping improves model gen-
erality because in test sets 2 and 3 the training and testing data are
mismatched. In row (F), we also integrated the DTW and 3-hop re-
sults, yielding further improvements to the MAP score on test set
1.

5.4. Unsupervised Scenario

Table 3. Results of attention-based multi-hop network learning from
a teacher approach (DTW).

Test set 1 Test set 2 Test set 3
(A) DTW 0.6173 0.5778 0.5678

(B) Attention + 1-hop 0.6128 0.5893 0.5548
(C) Attention + 3-hop 0.6141 0.5964 0.5702

Here the network is learned from a teacher approach, so no extra
label data is needed. We use DTW as the teacher approach, and
normalize the DTW similarity scores between 0 and 1 as the target
of regression. The results are shown in Table 3. From the table,
we find that the performance of the attention-based network without
multiple hops is comparable to DTW (rows (B) v.s. (A)), and that the
3-hop network outperforms DTW on test sets 2 and 3 (rows (C) v.s.
(A)). Here we emphasize that the time complexity of the network
during testing is far less than DTW: given a document length of M
and a query length ofN , the time complexity of DTW isO(M×N),
while the time complexity of the network is O(M × n), where n is
the number of hops3. Therefore, it is reasonable to replace DTW
with a network learned from it.

6. CONCLUSION

In this paper, we propose an end-to-end query-by-example STD
model based on an attention-based multi-hop network. The model
can be trained in either an supervised or unsupervised fashion. In
the supervised scenario, we show that attention and multiple hops
are both very helpful, and that the attention weights of the proposed
model reveal the time span of the input keyterm. In the unsupervised
setting, the neural network mimics DTW behavior, and achieves
performance comparable to DTW with shorter runtimes. In the
future, we will explore more new attention-based models, and in-
vestigate new models which directly output time spans instead of
a confidence score. We will also compare the performance of the
proposed approach and DTW on posterior features and cross-lingual
bottleneck features.

3We implemented DTW in C++ and the network using Tensorflow. On
average, without using a GPU, the proposed approach was 7 times faster than
DTW.
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