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ABSTRACT

This paper explores the possibility to use grapheme-based word and
sub-word models in the task of spoken term detection (STD). The
usage of grapheme models eliminates the need for expert-prepared
pronunciation lexicons (which are often far from complete) and/or
trainable grapheme-to-phoneme (G2P) algorithms that are frequently
rather inaccurate, especially for rare words (words coming from
a different language). Moreover, the G2P conversion of the search
terms that need to be performed on-line can substantially increase the
response time of the STD system. Our results show that using various
grapheme-based models, we can achieve STD performance (measured
in terms of ATWV) comparable with phoneme-based models but
without the additional burden of G2P conversion.

Index Terms— Spoken term detection, speech indexing,
grapheme-based speech recognition, keyword search

1. INTRODUCTION

A spoken term detection (STD) in large spoken document collections
is a specific task, especially when the search phase needs to be in-
teractive through some low-latency graphical user interface [1]. In
this case, there are only soft limitations on the computational power
needed to pre-process the collection. This allows using more compli-
cated structure of the pre-processing pipeline, e.g.: more complicated
automatic speech recognition (ASR) models [2], multiple ASR mod-
els [3] and speech pre-indexing [4]. On the other hand, there is a strict
demand on the fast response from the user interface during the search
phase. The user also expects that the search process is able to re-
trieve any spoken term or phrase, so that not only in-vocabulary (IV)
terms but also out-of-vocabulary (OOV) terms have to be searched
for. While the IV terms could be easily indexed in the inverted index,
the OOV terms are not a priori known and to speed-up the search pro-
cess other constituent units have to be indexed. Two state-of-the-art
methods employ two different types of such units:

• Sub-word units such as syllables or phoneme n-grams, which
in combination compose the OOV term [4, 5]; and

• Proxy words that suppose each OOV term is recognized as
a sequence of IV terms [6].

Sub-word units require to maintain a separate inverted index, but
also the proxy words need to store the structural properties of the
original word lattice to catch the exact sequences of proxy words.
The sub-word units could be easily indexed using many freely avail-
able database engines. The method based on proxy-words is more
demanding because it depends heavily on the use of weighted finite
state automatons (WFSA). Although the index of the whole collection

could be represented as a special kind of WFSA [7], it requires to
recompute and optimize the index WFSA when adding additional
records into a collection.

Grapheme-based models are becoming widely used in many
applications of speech recognition [8, 9, 10, 11, 12], especially in
under-resourced tasks. Their use simplifies the development of the
speech recognizer because the rather complicated step of phonetic
transcription could be skipped. This is still true even if the grapheme-
to-phoneme (G2P) methods (such as Phonetisaurus [13] or Sequitur
[14]) are used. The limitations of G2P methods come mainly from
the fact that they are also machine-learning methods with a limited
accuracy, especially for OOV words. Such words are often words with
non-systematic pronunciation (e.g. coming from different languages),
yielding the machine-learning methods essentially powerless.

In this paper, we focus on the use of grapheme-based speech
recognition models in the domain of large spoken archives. In the
experiments, we used the USC-SFI MALACH archive of interviews
with Holocaust survivors. We used testimonies in two languages –
English [15] and Czech [16]. For both languages, the training data
for acoustic and language models are available together with the
additional pronunciation lexicons. Especially the English collection
contains records of non-native speakers mentioning names and lo-
cations with uncertain or irregular English pronunciation (typical
examples: German word führer, name of Slovakian town Kežmarok
or Jewish name Lejerowisz).

For all such names and terms, the expert-defined pronunciations
are specified as part of the English and Czech corpora. The training
of G2P in such cases is possible [17] but difficult, since the collection
contains a mix of pure English words together with Central European
topography and proper names and with German colloquial words and
slang related to Holocaust. Although the deficiencies of G2P could
be partially alleviated with the ASR language model, this is not true
for the OOV words, where the proper transcription of the graphemes
to phonemes has to be known to find the word in the search index.

In this context, we wanted to study the effect of using the
grapheme-based models in the STD task over the large audio col-
lections, such as USC-SFI MALACH. The goal of the experiments
was to clarify the effect of the expert-created pronunciation lexi-
cons used to build phoneme-based models in comparison with the
lexicon-free grapheme-based models. We focused on the evaluation
of speech recognition error rates as well as on the evaluation of search
performance.

2. GRAPHEME-BASED SPEECH RECOGNITION

The grapheme-based speech recognition models differ from the
phoneme-based model in the set of context-dependent units. We used
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direct mapping of graphemes to the context-dependent recognition
units as in [10]. The numbers of different graphemes and phonemes
for English and Czech are summarized in Tab. 1. For grapheme-based
models, we use exactly one grapheme sequence for each word in the
recognition lexicon.

To train the acoustic models, we used a typical Kaldi [18] training
recipe for a DNN-based training. The same recipe was used for
grapheme- and for phoneme-based acoustic models. This recipe uses
layer-wise RBM pre-training, stochastic gradient descent training
and sequence-discriminative training optimizing sMBR criterion. We
used the topology with 5 hidden layers (each with 2,048 neurons)
and a softmax output layer. We used features based on standard
12-dimensional Cepstral Mean Normalized (CMN) PLP coefficients
with first and second derivatives. We trained two sets of acoustic
models – (1) the baseline using the phonemes as context-dependent
units with phonetic transcription generated from the pronunciation
lexicons and (2) the grapheme-based models using just the graphemes
of the lexicon words.

The language model (LM) for both phoneme- and grapheme-
based ASR was the standard word trigram LM. The same LM was
used in phoneme- and grapheme- experiments. To experiment with
the search methods based on sub-word units, we also used 5-gram
phoneme and grapheme language models. To recognize the collec-
tion, we used our in-house real-time decoder both for the word- and
phoneme recognition with trigram word LM and 5-gram phoneme
LM. The evaluation of error rates on both the word and sub-word
(phonemes/graphemes) levels were evaluated, the results are shown
in Tab. 2.

3. SPOKEN TERM DETECTION

Based on the previous work [4, 6, 19], we focus on the use of sub-
word units for spoken term detection. Nevertheless, in the experimen-
tal part of this work, we compare the method based on sub-words
units with the approach of using proxy words in the STD task.

The STD for large spoken archives can be divided into three steps,
where the first step is performed off-line. The subsequent two steps
are executed after the searched terms are known and the speed of
these steps affects the overall responsiveness of the interactive STD
system. These steps are:
1. Speech indexing including automatic speech recognition, lattice
generation and lattice indexing. The goal of speech indexing is
to speed-up the search process by pre-processing the collection of
records and storing the information needed to retrieve the searched
term in the index.
2. Putative hits detection is the first step of the search phase, where
the list of possible candidates (putative hits) of the searched term
or phrase is constructed based on the pre-computed index. This
step influences the recall of the resulting system because words not
occurring in the list of putative hits are definitively missing in the list
of results.
3. Term relevance estimation as the second step of the search phase
assigns the estimate of the posterior probability that the given pu-
tative hit of the given term occurs in the given time interval of the
audio record in the collection. This step determines the precision of
the system - it scores the putative hits to distinguish between true
positive hits and false negative hits. In our experiments, we use the
recognized grapheme (or phoneme) confusion network to represent
the pre-processed audio records in the collection.

Fig. 1. Indexation of grapheme lattice. The grapheme trigrams
with the assigned time intervals are stored in the inverted sub-word
index. The (merged) posterior probabilities are used to filter the
low-probability trigrams.

3.1. Speech indexing
During speech indexing, we maintain two separate inverted indices,
one for searching IV terms and one for OOV terms. The inverted in-
dex of IV terms is generated from the word-level ASR lattices, where
each record consists of the quintuplet (word, probability, audio id,
start, end), where probability is the posterior probability of a word
occurring in audio id at time interval [start, end].

To search the OOV terms, we construct the inverted index for
sub-word units. For the purpose of this paper, we experimented with
n-grams of phonemes and n-grams of graphemes. Based on the
previous experiments, we decided to use n = 3. This is because the
number of different trigrams of phonemes/graphemes is relatively
small (for English graphemes there is at most 263 different trigrams,
but in practice the number is significantly lower) and at the same time
the trigrams are specific enough – the query combined from multiple
trigrams often leads to a specific occurrence in the audio collection
with a acceptable number of false positives. A large number of
false positives could be eliminated in the term relevance estimation
step. On the other hand, this step negatively affects the search speed,
because the score of each false positive has to be estimated and then
discarded from the list of results (due to its low posterior probability).

To generate the sub-word index, we first convert the recognized
phoneme/grapheme lattice into a factor automaton [20]. The factor
automaton encodes the posterior probabilities of all subpaths (n-
grams of all orders) in the original lattice. Then, only the subpaths
of length n = 3 are selected. The overlapping subpaths bearing the
same trigram are merged together so that the time span is a union
of the two overlapping intervals and the posterior probability is the
sum of the two partial probabilities. To keep the index size within a
feasible size, we then apply the threshold (in the experiments, we use
the value 10−4) on posterior probabilities, so that the trigrams with
lower probabilities are discarded and not included in the sub-word
index. The whole process is illustrated in Fig. 1.

3.2. Putative hits detection

In the search phase, the workflow depends on the searched term – the
IV terms are searched directly in the IV inverted index. An OOV term
has to be decomposed into a sequence of sub-word units appropriate
the OOV inverted index (i.e. trigrams of graphemes/phonemes).
At this point, one can see the obvious advantage of the grapheme-
based models and STD, because the OOV terms do not need to

6260



Fig. 2. Searching using sub-word units (grapheme trigrams). The
searched term “hoses” is decomposed into a sequence of grapheme
trigrams and looked up in the inverted index. The exact match is not
necessary to indicate the putative hit.

be transcribed into a sequence of phonemes, which is a non-trivial
process.

The trigrams of graphemes/phonemes are then looked up in the
sub-word index. The results are grouped according to the audio record
identifier and sorted according to the time of the occurrence. Then,
the putative hits are determined as the clusters of trigrams on the time
axis. Two consecutive clusters have to be separated at least by a given
threshold (in our experiments, we used 0.3 seconds). Illustration of
the putative hits detection is shown in Fig. 2.

The putative hit is not required to be an exact match of all
searched trigrams. If the trigrams at the beginning or ending of
the word are not matched, the putative hit interval is extended in
this direction by a fixed time interval – the reason is that the term
relevance estimation could still exploit the information stored in the
corresponding part of grapheme/phoneme confusion network.

3.3. Term relevance estimation

To assign the posterior probability to a given putative hit, we used the
approach described in [19, 21] based on Siamese neural networks [22].
The approach uses two jointly trained neural networks to distinguish
between the same and different training examples. The difference
from common machine-learning posterior score estimation methods
is that the neural network is not forced to output 0 or 1 for different
or same examples. Instead, the inputs are mapped into an embedding
vector of fixed dimensionality and the similarity is computed as
a cosine distance of two vectors in this output embedding space [23].

Applied to the term relevance estimation, the goal is to assign
a relevance score to some segment of the input audio (represented
by corresponding part of the recognized grapheme/phoneme confu-
sion network x̂w) given a searched term w (represented by grapheme
sequence xw). Because both xw and x̂w are sequences of variable
lengths, we use two recurrent neural networks (RNNs) to process
xw and x̂w, respectively. The first RNN g(x̂w) computes the out-
put embedding ŷw from the recognized grapheme/phoneme con-
fusion networks and the second RNN f(xw) computes the output
embedding yw from the graphemes of the searched term w. Finally,
the relevance score is estimated as a cosine similarity of the pro-
nunciation embedding f(x) obtained from the graphemes of the
query x and the pronunciation embedding g(x̂) computed from
the recognized grapheme/phoneme confusion network, formally as
d(yw, ŷw) = 1 − cos(f(x), g(x̂)). For more details, see [19].

The training data for the Siamese neural networks consist of a set
of pairs (xw, x̂w) extracted from the large audio collection in the
unsupervised fashion. First, the audio collection is recognized using
the word- and sub-word- level recognizers. Then, the recognized
words with confidences higher than some predefined threshold (in
our experiments 0.9) are used as words xw and the corresponding
parts of the grapheme/phoneme confusion networks are used as x̂w.
This way, no labeled data nor human labor are required to prepare

Table 1. Statistics of development and test datasets.

English Czech

Dev Test Dev Test

LVCSR vocabulary 22,723 252,082
# of graphemes 26 39
# of phonemes 38 41

#speakers 10 10 10 10
OOV rate 1.0% 0.7% 3.2% 2.6%
#IV terms 710 735 1762 1764
#OOV terms 154 78 1251 1090
dataset length [hours] 11.1 11.3 20.4 19.4

Table 2. Recognition error rates in % (Grphm. - grapheme based
model, Phnm. - phoneme based model).

Dev data Test data

Grphm. Phnm. Grphm. Phnm.

English words 26.16 25.39 21.21 20.80
sub-words 23.51 22.15 23.18 21.33

Czech words 27.66 23.98 23.12 19.11
sub-words 20.36 19.21 16.51 16.13

the training data. During training the Siamese neural network, first
the pair of two different words (w, w̄) must be sampled from the
training data. To model the variations in pronunciation of words, the
corresponding grapheme/phoneme confusion networks x̂w and x̂w̄

are sampled from the training set of pairs. Then, the Siamese neural
network is trained to optimize the criterion for different pairs (w, w̄):

l(w, w̄) =
1

2
· ( max{0,m + d(f(xw), g(x̂w))− d(f(xw), g(x̂w̄))}

+ max{0,m + d(f(xw̄), g(x̂w̄))− d(f(xw̄), g(x̂w))})

To normalize the output scores, we used a simple method of rank
normalization with mapping the rank back to posterior probabilities,
as described in [24].

4. EXPERIMENTAL RESULTS

We compared the grapheme-based models with their phoneme-based
counterparts on the USC-SFI MALACH collection of interviews
with Holocaust survivors [15, 16]. We used the English and Czech
subset of the collection. The development and test data partitions
are summarized in Tab. 1. The RNNs used for term relevance score
estimation were trained from 100 hours for each language. The data
used to generate the training examples for RNNs were different from
the development and test datasets.
ASR evaluation. The first results are from the evaluation of recogni-
tion error rates. We trained the grapheme- and phoneme-based mod-
els and we used such models to recognize the development and test
dataset at the word level and also on the sub-word level (graphemes or
phonemes). The results are summarized in Tab. 2. The direct compar-
ison of models on both languages shows a slightly worse performance
of the grapheme-based models on both word- and sub-word- levels.
It is probably caused not by the lack of phonetic information but
rather by the lack of additional knowledge about the pronunciation of
irregular words (see Sec. 1 for examples).
STD evaluation. The next set of experiments shows the results of
the spoken term detection. We used automatically generated sets
of terms in the evaluation. The terms were automatically selected
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from the graphemic representation of words and the same set was
used in phoneme-based and grapheme-based experiments. Each term
included in the term set satisfies the following conditions: (1) it has
more than three graphemes, (2) the sequence of graphemes is not
a subsequence or near-subsequence of another term.

To evaluate the performance, we used the ATWV metric [25].
The optimal decision threshold was determined to maximize the
ATWV on the development set and the optimal thresholds were ap-
plied to the test set. The results are reported in Tab. 3.

The first conclusion from Tab. 3 shows that the performance
of in-vocabulary (IV) search is better for phoneme-based models in
English for both the development and test data, but in Czech, the
results are comparable. This is probably caused by the fact that the
graphemic and phonetic representations of regular Czech words are
close to each other.

The next rows of Tab. 3 compare two different methods for
out-of-vocabulary (OOV) search: the use of sub-word units and the
use of proxy words. The results on OOV terms clearly prefer the
method based on sub-word units – the ATWV is significantly higher
in comparison to the method based on proxy words for both the
grapheme- and phoneme-based models. Also the combined search
(the IV terms are searched in word index and OOV terms are searched
using sub-word units or proxy words, in Tab. 3 denoted as IV+OOV)
shows a preference for the use of sub-word units for speech indexing,
especially for the Czech language regardless of the use of graphemes
or phonemes for speech recognition.

As for IV terms, the ATWV scores for grapheme- and phoneme-
based models are very similar for Czech. The ATWV values for
the OOV terms on English are a bit noisy, which could be caused
by a smaller number of OOV terms in comparison with the Czech
language. The scores for combined search (IV+OOV) are higher
for the phoneme-based model on English, it is caused mainly by the
lower ATWV scores for IV terms.
Grapheme-mapped word index. The last set of experiments fo-
cuses on the use of graphemes only during the putative hit detection.
As has been said, the putative hit detection is performed in real-time
and its speed affects the overall perceived “snappiness” of an inter-
active STD system. Additional step of producing the pronunciation
using G2P systems, such as Sequitur, slows down the system re-
sponse. The increase in processing time is caused by two effects:
(1) the overall G2P generation time and (2) multiple pronunciation
variants for a searched term. Therefore, we experimented with the
so-called grapheme-mapped word index which is generated from the
ASR lattices at the word level. The fact whether the ASR system pro-
ducing the lattices was phonetic or graphemic does not play any role.
The lattices are first converted to the grapheme lattices by replacing
the lattice word transitions with a sequence of grapheme transitions.
At this point, we would like to point out that the time alignment of
the lattices nodes does not have to be precise, because the grapheme
time alignment is used only to detect overlapping sub-word units
(see Sec. 3.1). Therefore for each word transition, we generated
equidistantly spaced states for inserted grapheme transitions. The
transition probabilities were adopted from the word lattice.

Then, the index based on sub-word units is generated from these
artificially generated grapheme lattices. During the putative hit de-
tection, the searched term is treated as a sequence of graphemes and
searched in the sub-word index. It completely eliminates the G2P
from the search phase, because the term relevance estimation assigns
the posterior probability based on the grapheme representation of
the searched term and the recognized grapheme/phoneme confusion
network of the putative hit.

The results of experiments with grapheme-mapped word index

Table 3. Spoken term detection performance (ATWV metrics) for
in-vocabulary (IV) terms, out-of-vocabulary (OOV) terms and combi-
nation (IV+OOV).

Dev data Test data

Searched terms Grphm. Phnm. Grphm. Phnm.

E
ng

lis
h

IV 0.7759 0.7970 0.6991 0.7447

OOV sub-word 0.4176 0.3808 0.2677 0.3799
IV+OOVsub-word 0.6912 0.7070 0.6394 0.7042

OOV proxy 0.2481 0.2706 0.2105 0.3080
IV+OOV proxy 0.6804 0.7005 0.6506 0.6992

C
ze

ch

IV 0.8227 0.8224 0.8202 0.8277

OOV sub-word 0.6644 0.6591 0.6777 0.6818
IV+OOVsub-word 0.7541 0.7546 0.7621 0.7723

OOV proxy 0.3163 0.4942 0.3353 0.5031
IV+OOV proxy 0.6125 0.6905 0.6350 0.7090

Table 4. Spoken term detection performance with word-mapped
grapheme index, the IV column is the same as the IV rows in Tab. 3
(ATWV metrics).

IV OOV IV+OOV
E

ng
lis

h Graphemes 0.6991 0.2677 0.6394
+ grph.-mapped index 0.4417 0.6542

Phonemes 0.7447 0.3799 0.7042
+ grph.-mapped index 0.3623 0.6895

C
ze

ch

Graphemes 0.8202 0.6777 0.7621
+ grph.-mapped index 0.6260 0.7436

Phonemes 0.8277 0.6818 0.7723
+ grph.-mapped index 0.6707 0.7699

are shown in Tab. 4. The main observation is that the performance
of grapheme-mapped word index STD applied to phoneme-based
recognition models is between the pure phoneme-based STD and the
grapheme-based STD. In other words, we claim that the sub-word
index for putative hit detection could be constructed from the word-
level ASR lattices. This way, it is similar to the method based on
proxy words, but during the putative hit detection, it is not necessary
to obtain the exact match – only the partial match of sub-word units
is sufficient to indicate the putative hit.

5. CONCLUSION

The paper presents a comparison of grapheme- and phoneme-based
speech recognition models evaluated on large spoken collections in
two languages, English and Czech. The performance of both types
of models was similar for Czech. For English, the grapheme-based
models performed slightly worse. We also introduced the method
of word-mapped index which allows indexing the sub-word units
based only on the recognized word lattices. This allows to completely
eliminate the G2P algorithm from the search phase of the STD at the
price of a small decrease in STD performance.
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Hajič, Douglas Oard, J. Scott Olsson, Michael Picheny, and
Josef Psutka, “USC-SFI MALACH Interviews and Transcripts
English LDC2012S05,” 2012.

[16] Josef Psutka, Vlasta Radová, Pavel Ircing, Jindřich Matoušek,
and Luděk Müller, “USC-SFI MALACH Interviews and Tran-
scripts Czech LDC2014S04,” 2014.

[17] Aliya Deri and Kevin Knight, “Grapheme-to-phoneme models
for (almost) any language,” in Proceedings of the 54th An-
nual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). 2016, pp. 399–408, Association for
Computational Linguistics.

[18] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr
Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg
Stemmer, and Karel Vesely, “The Kaldi speech recognition
toolkit,” in IEEE 2011 Workshop on Automatic Speech Recog-
nition and Understanding. Dec. 2011, IEEE Signal Processing
Society, IEEE Catalog No.: CFP11SRW-USB.
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