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ABSTRACT

In recent years, machine learning models for automated speech scor-
ing systems were mainly built using data-driven approaches with
handcrafted features as one of the main components. However, the
remarkable successes of deep learning (DL) technology in a variety
of machine learning tasks has demonstrated its effectiveness in ex-
tracting features. Although there have been some efforts in utilizing
DL technology for the automated speech scoring task, a thorough
investigation of learning useful features is still missing. In this pa-
per, we propose an end-to-end solution that consists of using deep
neural network models to encode both lexical and acoustical cues
to learn predictive features automatically. Experiments also confirm
the effectiveness of our proposed solution compared to conventional
methods based on handcrafted features.

Index Terms— automatic speech scoring, deep neural network,
CNN, LSTM, attention.

1. INTRODUCTION

1In the last two decades, there have been a large number of stud-
ies using automatic speech recognition (ASR) technology to support
language learning, such as computer aided pronunciation training
(CAPT) and automated speech scoring (see [1] for a comprehen-
sive review). In an automated speech scoring system, as exemplified
in [2, 3], different handcrafted speech features were computed us-
ing various methods including signal processing, prosodic analysis,
and natural language processing (NLP). The extracted features were
fed into a statistical model to predict the scores reflecting speaking
proficiency levels.

However, handcrafted features are not an ideal choice due to the
difficulties in finding the right features for the task and the substan-
tial development effort. Recently, many machine learning tasks de-
ploy end-to-end methods, which automatically learn features, and
use a coherent process jointly obtain representations and models.
These end-to-end solutions have shown advantages in achieving a
more efficient model-building process and improved prediction per-
formance. Clearly, such solutions suggest a promising direction for
the automated speech scoring field as well.

This paper is organized as follows: section 2 briefly reviews pre-
vious research using Deep Learning (DL) based ASR systems and
scoring methods for automated scoring tasks; section 3 describes our

1This work was done while the first and second authors worked as full
time employees at ETS. The third author participated in this work’s early
stage research as a summer intern at ETS while she was affiliated with Uni-
versity of Texas at Dallas.

proposed end-to-end solution using different neural network (NN)
models; section 4 compares our end-to-end solution with the con-
ventional method of using handcrafted features; finally, section 5
makes conclusions and suggests future research directions.

2. PREVIOUS RESEARCH

Speech scoring is the task of measuring speech proficiency based
on a set of predefined features suggested in English Language
Learner (ELL) studies, including speaking fluency, intonation, vo-
cabulary, etc. Most of the previous work on measuring speech
proficiency used ASR outputs and prosodic analyses to calculate the
score. SpeechRaterSM for the Educational Testing Service R© (ETS)
TOEFL

R©
Practice Test Online (TPO) is a working example of this

method using a rich set of handcrafted speech features [2].
In recent years, fast growing DL technology has also been

applied to the speech scoring task. Beyond providing more accu-
rate recognition outputs, acoustic models (AMs) using deep neural
network (DNN) structures have been largely used to improve pro-
nunciation measurements [4–8]. For example, [4, 5] used a deep
belief network (DBN) model as AMs and found that DBN AMs
improved pronunciation evaluation performance over their GMM
counterparts. [6, 7] investigated the use of context-dependent DNN
hidden Markov models (CD-DNN-HMM), to improve ASR, and
obtained more accurate automatic assessment of child English learn-
ers. [8] investigated using three types of DL based AM structures,
i.e., DNN, Convolution Neural Network (CNN) [9], and a Tandem
GMM-HMM model using bottleneck features. These DL-based
AMs were found to provide substantial increases in recognition
accuracy and improved scoring performance compared to GMM
AMs.

Moreover, there have been several successful applications of
deep learning based automated scoring models to written responses.
[10] proposed an end-to-end NN-based model to automatically score
essays. The model contained a special word embedding training part
that considered the essays’ scores to be additional constrains and
a bi-directional Recurrent Neural Network (RNN) for learning fea-
tures [11]. On the Automated Student Assessment Prize (ASAP)
essay data set, this NN scoring model showed better performance
than the conventional model that used handcrafted features, e.g.,
word and part-of-speech (POS) n-grams, phrase-structure, etc. On
the same ASAP essay data set, [12] proposed a hybrid NN model
that consisted of a CNN model to encode local context information
and an RNN to encode long-range information. Instead of using the
RNN model’s hidden vector on the last time stamp, a mean over
time (MOT) aggregation was used to utilize information over the en-
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Fig. 1. A diagram showing our proposed end-to-end automated scoring solution using two NN encoders for feature learning, one for lexical
information and the other for acoustic information

tire essay. The proposed NN model showed improved performance
compared to a publicly available open-source conventional model,
Enhanced AI Scorer (EASE)2. On spoken responses, a preliminary
trial of the end-to-end scoring was made in [13]. Using prosodic
and spectrum measurements, a bi-directional RNN was used to learn
features. However, the learned features were tested together with the
handcrafted features in [13], and it was not clear whether the learned
features could work independently or not. In this paper, we inves-
tigate end-to-end scoring solution for the automated speech scoring
task using both lexical cues in recognized words and acoustical cues
to rate open-ended spoken responses.

3. DEEP LEARNING BASED SCORING MODELS

Figure 1 depicts our end-to-end automated speech scoring solution.
Two DL-based models are used to encode both lexical and acoustic
cues. The encoded features are concatenated and fed into a linear re-
gression model to predict the scores. To build the lexical model, the
word tokens being recognized are converted into input tensors us-
ing a word embedding layer. For acoustic model, we use four mea-
surements for each word: (1) AM posterior probability, (2) word
duration, (3) mean value of pitch, and (4) mean value of intensity.
These measurement are chosen because they are the widely used
cues, which will be explained in more details in Section 4. More-
over, three different deep learning structures are used to model the
learned word representation for lexical and acoustical cues, includ-
ing: 1D CNN, Bi-Directional RNN using Long Short-Time Memory
(LSTM) [11] cells (BD-LSTM), and the BD-LSTM RNN with an
attention weighting scheme.

3.1. CNN based scoring model

Subplot (a) in Figure 2 shows the details of the CNN model used
in this study. After receiving inputs, a dropout layer with probabil-
ity dpCNN1 is applied before a 1D convolution. Following [14],
convolution filters with varied sizes (convsize − 1, convsize, and
convsize + 1) are used to cover different receiving fields. For each
size, convn filters are used. For each filter output, a max-over-time

2https://github.com/edx/ease

pooling layer is used, which results in a 3× convn dimensional en-
coded vector. This vector runs through a second dropout layer with
probability (dpCNN2). Finally, the entire output of the CNN en-
coder is fed into a linear regression model to predict speech score.

3.2. BD-LSTM based scoring model

An RNN model processes a sequence of input data by recursively
applying a transitional function to its hidden state vector ht. The
activation of ht at time-step t depends on both the current input xt

and the previous hidden state ht−1.

ht = f(ht−1,xt) (1)

Commonly, an RNN model encodes an input sequence to a fixed-
sized vector hT on its last time step T and uses it as the input for
following prediction steps. Using an RNN alone can be hampered by
the exploding or vanishing gradients problem, which is the fact that
gradients may grow or decay exponentially during RNN training. An
LSTM cell addresses this issue, and makes RNNs useful in practice
[11]. As a result an LSTM structure is also used in our study. We
describe the implementation following [15].

Fig. 2. Three types of NN models for encoding input cues to learn
useful features.
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LSTM units at each time step t can be defined by a collection of
vectors in Rd: an input gate it, a forget gate ft, an output gate ot, a
memory cell ct and a hidden state ht. At each time step, an LSTM
maintains a hidden vector h and a memory vector c, responsible for
controlling state updates and outputs. More concretely, we define
the computation at time step t as follows:

it = σ(Wixt +Uiht−1 +Vict−1)

ft = σ(Wfxt +Ufht−1 +Vfct−1)

ot = σ(Woxt +Uoht−1 +Voct)

ct = ft � ct−1 + it � tanh(Wcxt +Ucht−1)

ht = ot � tanh(ct)

(2)

where xt is the input (word embedding vector) at the current time
step t, σ is the logistic sigmoid function and � denotes element-
wise multiplication. The forget gate ft controls how much of the
information stored in the memory cell will be erased, the input gate
it controls how much each unit is updated, and the output gate ot

controls the exposure of the internal memory cell.
Part (b) of Figure 2 shows the BD RNN with LSTM cells used

in our study. A bi-directional network is chosen here to take into
account information both from past and future given the inherent na-
ture of speech and language production. The final vector of each
hidden state at time t is formed by concatenating the hidden state
vectors from two directions with LSTMcue

dim dimensions. In this
context, cue can refer to either lexical (lex) or acoustical (ac) infor-
mation. Note that two dropout layers are applied before and after the
BD RNN layer with the probability values of dpRNN1 and dpRNN2.

3.3. BD-LSTM attention scoring model

In this section, we introduce the attention mechanism of our BD-
LSTM model which is proven very effective in many natural lan-
guage processing tasks [16]. As Figure 2 (c) shows, an attention
model is added to our system through one more layer. In the BD-
LSTM model, only the last hidden state (hT ) is used to make the fi-
nal decision, and the context information from previous times (prior
to T ) were not utilized. To overcome this limitation, we use a sim-
ple feed-forward attention model as proposed in [17] to obtain a set
of weights for all hidden states. A single vector S from the entire
sequence (ht) can be formulated as follows:

et = a(ht), αt =
exp(et)∑T

k=1 exp(ek)
,S =

T∑
t=1

αtht (3)

where, a is a learnable function depending on ht. This simplified
feed-forward attention can be seen as producing a fixed-length em-
bedding S of the input sequence by computing an adaptive weighted
average of the hidden state sequence h. Figure 3 represents more
details on the attention mechanism.

4. EXPERIMENTS

4.1. Database

In this study, we utilize the data collected from an online practice for
a well known English test that measures test takers’ readiness to at-
tend schools with English as the primary instructional language. The
dataset is divided into three partitions: the train set containing 2930
spoken responses, the dev set containing 731 responses, and the eval
set containing 1827 responses. All spoken responses were scored by
experienced human raters following a 4-point scale scoring rubric

Fig. 3. Using BD-LSTM’s last hidden state vs. using a feed for-
ward attention mechanism to utilize a weighted average of all hidden
states.

designed for scoring this English test. A score of 1 was the lowest
band while a score of 4 was the highest band. Each response was
scored by one group of raters (R1) and verified by a second group of
raters (R2). Note that in our experiments, only the scores provided
by the R1 group were used as ground truth scores.

The ASR system used for recognizing test takers’ non-native
English responses is a DNN-HMM hybrid ASR system built with
the Kaldi open-source toolkit. This model is a 5-layer feed-forward
DNN using acoustic features from the current frame plus the pre-
vious and following 5 context frames. More details can be found
in [8]. The ASR model is trained on transcribed responses from the
operational English test containing 819 hours of non-native spon-
taneous speech covering more than 100 first languages from about
150 countries around the world. As reported in [8], this ASR system
achieved a word error rate of 35% on the spoken responses collected
in the online practice test.

4.2. Conventional model

SpeechRaterSM , an automated scoring engine for assessing non-
native English proficiency [2], was used to extract scoring features.
The features are related to several aspects of the speaking construct3,
which include fluency, rhythm, intonation & stress, pronunciation,
grammar, and vocabulary use. Table 1 provides a concise synopsis
of these features.

Using Pearson correlations between these features and human
rated scores computed on the train set, a subset of features (n = 12)
were selected. Then, the SKLL toolkit4 was used for training and
evaluating different prompt-independent scoring models. We run
different regression methods, including Random Forest (RF), Gra-
dient Boosting Tree (GBT), Support Vector Regression (SVR) for
the speech scoring task. The hyper-parameters of these models were
decided automatically by the SKLL using a 5-fold cross validation
on the train set. Among the three methods, the GBT model was
found to provide the highest machine-human score correlation.

4.3. Deep learning based models

We used the Keras Python package to implement all DL-based mod-
els described in Section 3. We used pre-trained GloVe word embed-
dings [21] and set the embedding dimension to 300. When a word
could not be found in the GloVe embeddings’ vocabulary, we set up
its embedding vector to be all zeros. The embedding vectors were
further fine-tuned during model training steps. For acoustic cues, we
used Kaldi ASR’s outputs to obtain both AM posterior probabilities

3In psychometric terms, a construct is a set of knowledge, skills, and
abilities that are required in a given domain.

4https://github.com/EducationalTestingService/
skll
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Category Example Features
Fluency Features based on the number of words per second, number of words per chunk, num-

ber of silences, average duration of silences, frequency of long pauses (≥ 0.5 sec.),
number of filled pauses (uh and um) [2], frequency of between-clause silences and edit
disfluencies compared to within-clause silences and edit disfluencies [18].

Rhythm, Intonation & Stress Features based on the distribution of prosodic events (prominences and boundary tones)
in an utterance as detected by a statistical classifier (overall percentages of prosodic
events, mean distance between events, mean deviation of distance between events) [2]
as well as features based on the distribution of vowel, consonant, and syllable durations
(overall percentages, standard deviation, and Pairwise Variability Index) [19].

Pronunciation Acoustic model likelihood scores, generated during forced alignment with a native
speaker acoustic model, the average word-level confidence score of ASR and the av-
erage difference between the vowel durations in the utterance and vowel-specific means
based on a corpus of native speech [20]

Grammar Similarity scores of the grammar of ASR output of the response with respect to refer-
ence response.

Vocabulary Use Features about the diversity and sophistication of the vocabulary based on the ASR
output.

Table 1. Descriptions of SpeechRaterSM features for automated speech scoring.

and durations, and we used Praat5 software to obtain pitch and in-
tensity measurements. When training the DL-based models using
the Adam optimization [22], we randomly selected 10% of the train
set for early stopping to avoid over-fitting. For DL hyperparame-
ter tuning, Tree Parzen Estimation (TPE) method [23] was utilized.
This approach was implemented using the Hyperopt Python pack-
age. We run Keras with the Theano backend on an Nvidia Titan X
GPU card to speed up the entire experiment. After running 100 iter-
ations of hyperparameter search, we ended up with the following se-
lection: convsize is 4 (which entails that the various filter sizes were
(3, 4, 5)), convn is 100, dpcnn1 is 0.25, dpcnn2 is 0.5, LSTM lex

dim

is 128, LSTMac
dim is 32, dpLSTM1 is 0.25, and dpLSTM2 is 0.5.

4.4. Results

Table 2 reports our machine scoring experiment using both the con-
ventional method and the DL-based methods explained in section
4.2 and 4.3. The conventional model using sophisticated speech fea-
tures and the GBT regression model leads to a Pearson correlation
of 0.585 between the machine-predicted scores and the human-rated
scores. This result was consistent with previously reported results on
similar tasks, such as [8]. Our CNN based model achieved a Pearson
correlation of 0.581, which is very close to the conventional model.
Moreover, the BD-LSTM model did not show any considerable per-
formance improvement, in spite of incorporating richer sequential
information, as compared to the CNN model. However, after ap-
plying the simple feed-forward attention mechanism, the predicted

System Pearson r
Conventional model 0.585

CNN 0.581
BD-LSTM 0.531

BD-LSTM w/ attention 0.602

Table 2. A comparison of the Pearson correlations between human
rated scores and the machine predicted scores from the conventional
model and the NN models using different encoders

5http://www.fon.hum.uva.nl/praat/

scores had the highest Pearson correlation with the human rated
ones, at r = 0.602 correlation. This result shows that weighting
among all internal hidden states plays an important role in increas-
ing prediction accuracy for the speech scoring task. In other words,
the machine needs to focus on specific part of the speech to evaluate
the proficiency, instead of taking into account the whole response.
This fact applies to human raters as well. Our experimental results
confirm the power of DL in extracting meaningful representations
for the speech scoring task, which has superior performance com-
pared to the handcrafted features, which were developed during a
long time of research in both the second language learning and au-
tomated assessment fields. Note that the information resources pro-
vided to these two models are not equal. For example, word embed-
ding representations, which are viewed as providing better lexical
presentations than n-grams, were used in the NN model. Therefore,
the performance gain may be caused by a compound factor of using
both rich information and the neural network structure.

5. CONCLUSIONS

In this study, we investigated deep learning based technology to
solve the automated speech scoring task in an end-to-end approach.
To our knowledge, this is the first study to use automatically induced
features from both ASR hypotheses and basic acoustic analyses. We
studied different DL models to learn the best predictive features for
the speech scoring task. In particular, the CNN model showed a
scoring performance quite close to the one demonstrated by a con-
ventional method using handcrafted features and a GBT regression
model. When using an attention mechanism to utilize all the hid-
den states’ information, the BD-LSTM model showed a dramatic
performance improvement compared to both traditional and other
DL-based models. Experimental results confirm the effectiveness of
end-to-end solutions for automated assessment research.

This study leads to the following steps for future improvement.
Firstly, it will be important to increase the explainability of DL-
based models. Next, more acoustic cues can be utilized to pro-
vide a comprehensive coverage. Finally, other sophisticated atten-
tion mechanisms can be explored to improve the performance.
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