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ABSTRACT

This work deals with non-native children’s speech and in-
vestigates both multi-task and transfer learning approaches
to adapt a multi-language Deep Neural Network (DNN) to
speakers, specifically children, learning a foreign language.
The application scenario is characterized by young students
learning English and German and reading sentences in these
second-languages, as well as in their mother language. The
paper analyzes and discusses techniques for training effective
DNN-based acoustic models starting from children’s native
speech and performing adaptation with limited non-native au-
dio material. A multi-lingual model is adopted as baseline,
where a common phonetic lexicon, defined in terms of the
units of the International Phonetic Alphabet (IPA), is shared
across the three languages at hand (Italian, German and En-
glish); DNN adaptation methods based on transfer learning
are evaluated on significant non-native evaluation sets. Re-
sults show that the resulting non-native models allow a sig-
nificant improvement with respect to a mono-lingual system
adapted to speakers of the target language.

Index Terms— Transfer learning, Multi-task learning,
non-native speech recognition, children’s speech

1. INTRODUCTION

Nowadays the usage of deep neural networks hidden Markov
models (DNN-HMMs) [1, 2] provides effective performance
in speech recognition: there are concrete applications rang-
ing from mobile voice search [3], transcriptions of broadcast
news, videos [4] or conversations [5] to recognition in noisy
environments [6, 7, 8].

The availability of large training corpora for a given appli-
cation domain allows the training of a DNN with many lay-
ers and parameters in order to improve the classification per-
formance. On the contrary, in the absence of sufficient data
for training, e.g. in the case of under-resourced languages,
the number of DNN parameters that can be reliably estimated
greatly reduces and, consequently, classification performance
is not always satisfactory. Recognition of children’s speech
is an application domain often characterized by training data
shortage, even for major languages.

As alternative to complete training of DNN parameters,
adaptation of an existing DNN by using the available small
data set is a viable approach. This has been investigated in
[9, 10], where an initial DNN trained on adult speakers is then
adapted using a limited set of children’s data. Another ap-
proach, to address the lack of training data is represented by
multi-task learning. This approach has been demonstrated ef-
fective for multi-lingual speech recognition, especially if the
size of training data for each language is small [11, 12, 13, 14,
15]. The reason of this is due to the fact that the shared hidden
layers of the DNN used to estimate the emission probabilities
of HMM states in a hybrid Automatic Speech Recognition
(ASR) system [1], are language independent if the DNN itself
is trained on multi-lingual data. This DNN can then be used
to initialize a new one which can be trained only with data of
the target language. When the size of training data is small
only a subset of the connection weights, usually those of the
output layer, are re-estimated. This training procedure is of-
ten called transfer learning, to indicate the fact that an initial
set of learned parameters is transferred to the final acoustic
model used by the ASR system.

In this work we address the problem of automatic speech
recognition for children speaking a non-native language,
specifically: (a) Italian students, speaking both English and
German, and (b) German students speaking English.

It is known that non-native speakers articulate sounds
very differently from native ones, because they try to use the
phonology of their mother language, giving rise to pronuncia-
tion errors [16], mainly: when speakers try to apply spelling-
to-sound rules of their native language to the new language,
resulting in an inappropriate choice of target phoneme string
or when the influence of their native phonological system in-
terferes with the production of sound in the target system [17].
In the past several approaches have been proposed to take into
account the pronunciation errors of non-native speakers [18],
spanning from the usage of non-native pronunciation lexicon
[19, 20, 21, 22, 23] to acoustic model adaptation using either
native data and non native data [24, 25, 26, 27].

As previously mentioned, we use transfer learning to
adapt the multi-lingual DNN trained on native data from Ital-
ian, German and English children. Basically, only the weights
of the output layer of the network are updated, through back
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propagation, using data from non-native speakers of a given
language while the weights of the lower layers are frozen and
remain unchanged during adaptation. In addition, we propose
to use multi-lingual data even in the adaptation phase, that is
to update the weights of the output layer of the original DNN
with all available non-native data.

The novelties of this work are the application of both
multi-task learning and transfer learning to the recognition
of speech from children speaking in a foreign language and
the usage of (non-native) multi-lingual data for updating the
weights of the original transferred DNN.

Experimental results reported in the paper show that: (a)
the multi-lingual DNN performs similarly, on native data, to
mono-lingual networks, i.e. trained only with data from a sin-
gle language; (b) the multi-lingual DNN performs signifi-
cantly better on non-native data than mono-lingual DNNs; (c)
the usage of multi-lingual data in the adaptation process fur-
ther increases the performance on non-native data.

This paper is organized as follows: Section 2 describes the
experimental data used for testing the approaches proposed
in this work, Section 3 gives details of the acoustic models,
language models and IPA based lexicon used in the multi-
lingual ASR system employed in this work; section 4 reports
experiments and related results. Finally, Section 5 concludes
the paper, presenting directions for future work.

2. SPEECH DATA

In this work we exploited speech data collected within the Eu-
ropean funded project PF-Star (2002-2004). During the PF-
Star project, noticeable amount of speech data were collected
from English, German, Italian and Swedish children [28](for
one of the Italian corpora see also [29]). For the purposes of
this work, children’s speech pronounced by English, German
and Italian students in the three languages was considered, as
shown in Table 1. As already mentioned, data from native
speakers were used to train Acoustic Models (AMs), while
test was carried out on both native and non-native data sets.
In addition, a non-native adaptation set was used in trans-
fer learning and, finally, performance, measured in terms of
Word Error Rate (WER), was computed on both native and
non-native evaluation data sets. The overall age range of the
children is 7-13 and there is no age mismatch between train-
ing and test children.

speakers\lang Italian German English
Italian train + eval ada + eval ada + eval
German – train + eval ada + eval
English – – train + eval

Table 1. Native and non-native children’s speech corpora
used in the paper with train, eval and ada denoting training,
evaluation and adaptation data sets.

number of language total running lexicon
speakers spoken duration words size

mono-lingual native training corpora
115 Italian Italian 07:15:53 49233 9519
168 German German 07:45:31 49326 7451

70 English English 06:04:49 26873 1267
mono-lingual native eval corpora

42 Italian Italian 02:37:07 17936 5042
11 German German 01:21:18 7859 1948
30 English English 01:40:38 9224 1036

Table 2. Details for mono-lingual, native, training and eval
data sets.

Table 2 reports details about the mono-lingual training
and eval data—in all cases, native children’s speech—in terms
of number of speakers, duration, number of running words
and lexicon size. Table 3 presents some statistics about the
non-native speech data. In particular, Italian children read
both English and German sentences, while German children
read English sentences. In all cases, the speech data was split
into ada (used to perform transfer learning) and eval data (for
evaluation purposes only). Overlapping among training, ada
and eval speakers never occurs.

number of language total running lexicon
speakers spoken duration words size

non-native ada corpora
9 Italian German 00:29:54 2575 438

21 Italian English 00:58:24 2753 390
42 German English 00:30:19 3081 597

non-native eval corpora
13 Italian German 00:46:14 3769 474
27 Italian English 01:16:29 3632 444
52 German English 00:43:14 4440 630

Table 3. Details for non-native ada and eval data sets.

3. ASR SYSTEM

As mentioned in the Introduction, a multi-lingual DNN was
first trained on the data of native speakers.

3.1. Multi-lingual DNN

The ASR system is based on the KALDI open source soft-
ware toolkit [30]. The baseline acoustic model is build fol-
lowing the Karel’s DNN recipe [31]: the preliminary HMM
is trained on the usual 13 mel-frequency cepstral coefficients
(MFCCs), which are mean and variance normalized; fMLLR-
transformed coefficients are then estimated and used as input
features for the DNN. The learning procedure features layer-
wise pre-training based on Restricted Boltzmann Machines,
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per-frame cross-entropy training and sequence-discriminative
training (lattice framework and State Minimum Bayes Risk
criterion). Besides the mono-lingual DNNs trained on native
German, Italian, English speech, a multi-lingual model is de-
rived from a shared lexicon (see Section 3.3 for details): Ta-
ble 4 reports the number of phonetic units used by the mono-
lingual lexica as well as by the multi-lingual lexicon; it also
reports the size of the output layer of the DNNs trained for
mono-lingual and multi-lingual speech recognition.

units dnn output
Italian 28 1679
German 45 1592
English 43 1526
multi 67 1632

Table 4. Number of phonetic units and size of the output layer
of the DNNs trained for mono- and multi-lingual DNNs.

In the context of the work the term ”transfer learning” is
intended as re-estimation of the weights of the DNN output
layer.

3.2. Language Models

Texts used to train the LMs are the transcriptions of the au-
dio training data. Since the focus of this paper is on acoustic
modeling, we did not cope with Out-Of-Vocabulary (OOV)
word issues, which would have complicated the analysis of
results; as such, the words of the test sets have been added to
the training text data as unigrams. Also, in order to avoid to
use different LMs for native and non-native corpora, we de-
cided to build only a single LM for each language. For this
reason, the lexicon of each language has to contain at least all
of the words included in the native eval, non-native ada, and
eval data sets. We decided to use a bigram LM, with Witten-
Bell smoothing, that assures a reasonable perplexity over the
ada + eval data sets, as reported in Table 5.

language lexicon running 2-grams PP OOV
size words

Italian 5042 17936 13854 38.2 0.0%
German 2194 14203 6959 20.6 0.0%
English 1289 23130 4983 25.0 0.0%

Table 5. Text data used to build the three LMs and related
perplexities (PP).

3.3. Lexicon

Concerning the lexicon, we have at our disposal grapheme to
phoneme converters for the three languages, that were used in
the past to build mono-lingual ASR systems. For this work,
we decided to convert all the mono-lingual phones in IPA for-
mat, shown here as ASCII sequences. Of course, some of the

choices we made (for instance, we replaced geminate conso-
nants with simple ones for the Italian lexicon) are question-
able and some of them could be revised in the future. Table 6
contains the list of all the 67 phones resulting from the merg-
ing of the three lexica. Of these, 18 phones are common for
all three languages, 13 are common to only 2 languages (9
de+en, 2 it+de, 2 it+en), and 36 are present in one language
only (16 de, 14 en, 6 it).

A” de OW en j it de en
AA en OY de en k it de en
AE en O de en l it de en
AH en R de m it de en
AI de en S it de en n it de en
AU de en TH en o: de
AX en U” de o it
C de UA en p it de en
DH en U de en pf de
E@ de Z en r it de en
EA en a: de s it de en
ER6 de a it de tS it de en
ER en b it de en t it de en
EY en dZ it de en ts it de
E de en d it de en u” de
IA en dz it u: de
I de en e: de u it en
J it e it v it de en
L it f it de en w it en
NG de en g it de en x de
O”2 de h de en z it de en
O”9 de i: de
OH en i it

Table 6. List of IPA-like (expressed in ASCII characters)
phones used for the three languages.

4. EXPERIMENTS AND RESULTS

Table 7 reports the WER results obtained using the four
reference acoustic models: the three mono-lingual models,
trained on clean data from native children speaking Ital-
ian, German and English, perform slightly better than the
multi-lingual model trained on the three data sets using the
multi-lingual lexicon. Nevertheless, the multi-lingual sys-
tem shows more robustness against non-native speech: the
off-diagonal WERs, that represent the performance of young
students speaking a foreign language, are significantly lower
when the target language is English (39.8% against 53.2 and
31.7 against 40.4) while it slightly worse in case of German
(i.e. 18.5% against 17.4%). Note that, although the perplexity
is higher, the WER of the Italian baseline is the lowest one,
due to better recording quality.

The forthcoming experiment shows the effectiveness of
transfer learning in this applicative context: the baseline
DNNs are adapted to non-native speech using limited data
from the target domain. The adaptation sets comprise data of
Italian students reading German and English sentences and
German students reading English text. The adaptation is im-
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speakers \ language Italian German English
mono-lingual AMs

Italian 2.1 17.4 53.2
German - 7.3 40.4
English - - 8.0

multi-lingual AM
Italian 2.2 18.5 39.8
German - 7.9 31.7
English - - 10.4

Table 7. WERs using mono and multi-lingual acoustic
models. For mono-lingual non-native experiments (the off-
diagonals numbers), the system is trained on the native speech
of the target language.

plemented by keeping fixed all the layers of the DNNs except
the last one. A few additional learning iterations (5) are then
performed using the adaptation material. We evaluated three
modalities related to transfer learning: (m1) the mono-lingual
model is adapted to non-native speakers using adaptation data
of the single target language; (m2) similarly, the multi-lingual
model is adapted to a single target language; (m3) the multi-
lingual model is adapted to multi-lingual non-native speech
using together the three adaptation sets (i.e. English and
German data coming from Italian speakers and English data
coming from German speakers).

The results presented in Table 8 demonstrate that the
multi-lingual system is better capable of coping with the
acoustic variability of non-native speech. The multi-lingual
system exhibits better behavior, producing more effective
models for non-native speech: the WERs related to Italian
students speaking in both German and English decrease from
11.1% to 9.6% and from 16.0% to 15.4%, respectively; a
larger gain is observed in case of Germans speaking in En-
glish (WER from 18.3% to 15.2%). Similar improvement
can be observed adapting the multi-lingual system with non-
native speech of the three target languages.

speakers \ language German English
adapted mono-lingual AMs (m1)

Italian 11.1 16.0
German - 18.3

adapted multi-lingual AMs (m2)
Italian 9.6 15.4
German - 15.2

adapted multi-lingual AM (m3)
Italian 10.4 15.0
German - 15.1

Table 8. WERs obtained with mono- and multi-lingual
acoustic models adapted to non-native speech using the three
modalities m1, m2, and m3.

The next experiment (see Table 9) investigates the case
where, starting from the multi-lingual model, the adapta-
tion data is aggregated with respect to the native language
of speakers and to the target language. In the first case, we
use the adaptation sentences of Italian speakers reading in
German or English. In the second case, the adaptation set
is defined in terms of the language spoken by the students,
regardless of their original mother language, that is English
sentences uttered by Italian and German students. Also in this
case, the gain with respect to the mono-lingual case is notice-
able. Moreover, this combination can lead to the best results
(highlighted in bold) for two cases; of course, as expected,
the pairs with no adaptation data (German-English pair and
Italian-German pair, respectively) produce worst results.

speakers \ language German English
adapted multi-lingual AM with Italian speakers

Italian 10.3 14.2
German - 19.8
adapted multi-lingual AM with English utterances
Italian 16.7 14.8
German - 15.0

Table 9. WERs related to experiments exploring modalities
in which non-native adaptation data sets are merged according
to source or target language (i.e. Italian native speakers and
students speaking in English, respectively).

As a consequence, we conclude that transfer-learning in
the context of children non-native speech, where usually a
limited amount of data is available for training purposes, can
be successfully applied to mitigate the acoustic mismatch.
Moreover, it seems evident that the hidden layers of the multi-
lingual DNN are able to build a more general representation
of the phonetic space and this turns out to be suitable for adap-
tation to non-native speakers.

5. CONCLUSIONS

In this work we have investigated the application of transfer
learning for adapting a multi-lingual DNN, trained on native
speech from three languages (Italian, German, English), to
non-native data. The approach is implemented updating the
output layer of the DNN with small adaptation sets; the exper-
imental results confirm the validity of this technique and show
the positive effect of a multi-language model to compensate
for the pronunciation differences of a non-native speaker.

For future work we plan to further address non-native
acoustic modeling, experimenting on other types of acous-
tic features and exploiting some a-priori knowledge about
phonetics of the first and foreign languages. In particular, it
seems promising to investigate alternative lexicons that take
into account the possible pronunciation variations introduced
by non-native students.
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