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ABSTRACT

While conventional approaches to spoken language understanding
involve cascading a speech recognizer with a language understand-
ing system, in this paper, we describe a novel approach for deriving
semantics directly from the speech signal without the need for an
explicit speech recognition step. We evaluate this approach in the
context of a customer care dialog system and demonstrate its effec-
tiveness in comparison to the conventional approach.

Index Terms— Spoken Language Understanding, end-to-end,
intent determination, speech recognition

1. INTRODUCTION

With the increasing availability of robust speech recognition on
mobile devices as seen in consumer devices such as Alexa, Siri,
GoogleNow, there is a resurgence of speech-driven conversational
systems that allow users to accomplish their desired tasks by inter-
acting with virtual agents. Such systems are typically modeled as
a sequence of components chained together – (a) a speech recog-
nizer that transforms the speech signal into words, (b) a language
understanding component that transforms the words into application
semantics, typically a machine interpretable and actionable sequence
of labels, and (c) a dialog manager that maintains the context of the
conversation and interfaces to information sources to accomplish
users’ requests.

A speech recognizer itself is a sequence of transductions that
transforms a sequence of acoustic events to words, mediated by an
acoustic model, a pronunciation lexicon that maps phones (a rep-
resentation of units of speech) into words and a language model
that ranks the likelihood of a sequence of words. While the acous-
tic model is trained from data consisting of the audio signal and its
transcription and the language model is trained from a large corpus
of words, the pronunciation lexicon is a language-specific resource
that is typically created through manual supervision, a tedious and
expensive process.

A language understanding system (NLU) extracts one or more
semantic labels from a user’s request. The model is derived through
supervised classification techniques from corpora of user requests
annotated with semantic labels. The classification techniques rely
on an optimal combination of attributes extracted from user requests
with the objective of minimizing the error in predicting the semantic
label during supervision.

Spoken language understanding is accomplished through a
chaining of a speech recognizer with an NLU system. Typically, a
single best recognizer output is used to extract the semantic content
of the user’s request. In order to alleviate the impact of errors in
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speech recognition, there have been attempts to extract semantics
from n-best and lattice outputs of a speech recognizer with limited
success.

In this work, we present a novel end-to-end approach to extract
semantics directly from the speech signal without the need for a
speech recognition system. The benefits of this approach include
(a) obviating the need for a pronunciation lexicon, (b) extracting
semantics from mixed language speech and (c) potential for richer
information transfer from speech to identify the semantics. In this
approach, the lexical content of the speech signal is represented as
distributions over continuous space representations that are tuned to
optimize the discrimination loss of identifying the semantics.

The outline of the paper is as follows. We review previous ap-
proaches and compare them to our approach in Section 2. In Sec-
tion 3, we describe the end-to-end approaches that we use for jointly
training the acoustic and semantic classification models. We present
the data and the experimental results in Section 4, followed by dis-
cussion in Section 5, and our conclusions in Section 6.

2. RELATED WORK

The components of conventional SLU systems tend to be trained
independently with training criteria that are specific to the subsys-
tem and may be different from the overall metric for the SLU sys-
tem. For example, ASR systems are typically evaluated based on
word error rate (WER) but an ASR component with the lowest WER
may not provide the best translation performance as part of a spoken
language translation system [1]. Many attempts have been made to
overcome this inconsistency by no longer treating each subsystem in
isolation. End-to-end optimization of the pipeline is one approach to
overcome the inconsistency problem [2]. Yaman et al. [3] proposes
joint optimization of the ASR language model and parameters of a
log-linear model for text classification using discriminative training
with n-best lists. He and Deng [2] extended that work by developing
a generalized framework for jointly optimizing all parameters of a
GMM-based ASR subsystem and a downstream subsystem modeled
by a log-linear model for a variety of speech information processing
tasks.

Unlike these earlier works which have maintained the full ASR
component but improved performance by jointly optimizing ASR
and NLU components, our approach does not require a conventional
ASR system at any stage nor does it assume the NLU component
takes the form of a log-linear model.

Other works have left the ASR component in place but replaced
the text classifier component with deep learning for intent determi-
nation and slot filling [4, 5, 6, 7, 8, 9].

Lee et al. [10] provides an overview of approaches which aim
to go beyond cascading ASR and information retrieval for spoken
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information retrieval (SIR). When the queries are spoken, spoken
content can be retrieved without ASR through direct matching of
the signals at the acoustic level in the query and archive. They re-
view two categories of approaches for content retrieval when queries
are spoken. In the first category of approaches, matches are found
by comparing the audio signals or feature vector sequences by tem-
plate matching using dynamic time warping. The second category
of approaches is model-based and involves unsupervised training of
acoustic models with a set of automatically discovered acoustic pat-
terns found in the target archive. For example, acoustic unit dis-
covery (AUD) can be applied to discover phoneme-like or word-like
patterns from data in the target archive. Then both the spoken queries
and documents in the archive can be decoded with the set of automat-
ically discovered acoustic patterns to obtain a set of acoustic pattern
sequences which can be compared.

Liu et al. [11] proposes topic identification without the need for
manual transcriptions and dictionaries for building an ASR system
specifically for the target domain. In their approach, unsupervised
tokenizations of speech are obtained through unsupervised term dis-
covery (UTD) or AUD and input into a CNN to obtain a topic clas-
sification. However, the input features for UTD and AUD are bot-
tleneck features extracted from a conventional ASR system trained
with transcribed multilingual data. Furthermore, the system for UTD
or AUD representations and the CNN classifier are trained with dif-
ferent objectives and are never jointly trained. Thus, the inconsisten-
cies resulting from treating each subsystem in isolation still remain.

Audhkasi et al. [12] proposes an approach for keyword search
(KWS) without an ASR system. A character-based CNN-RNN lan-
guage model is trained on a text corpus for encoding text queries
and an RNN autoencoder is trained with untranscribed speech for
extracting a fixed length representation of utterances in the KWS
database. At test time, utterance encodings and query embeddings
are input to a KWS neural network to determine if the utterance con-
tained the query. The system components can also be finetuned to-
gether for the KWS objective but that did not improve performance.
Their approach suffers from a large degradation in performance rela-
tive to the baseline system with ASR. Additionally, the input features
for the RNN autoencoder are bottleneck features extracted from a
conventional ASR system trained with transcribed multilingual data.

3. METHODS

The SLU task we focus on in this work is intent determination. Intent
determination is a classification task that can be defined as predicting
an intent class Ĉ which maximizes the posterior probability given an
utterance X ,

Ĉ = argmax
C

P (C|X). (1)

The typical approach consists of two stages of processing to compute
Ĉ. First, an ASR system determines the most likely word sequence
Ŵ as

Ŵ = argmax
W

P (W |X) (2)

through Viterbi decoding performed on a weighted finite state search
graph which combines scores from an acoustic model, pronunciation
lexicon, language model and transition or duration model1. Follow-
ing that, n-gram features are extracted from Ŵ and an intent deter-
mination is made by computing

Ĉ = argmax
C

P (C|Ŵ ) (3)

1In practice, the Viterbi decoder returns the most likely state sequence.

using existing text classification algorithms such as support vector
machines (SVMs) [13] trained to predict the intent. The conven-
tional approach can be described as a “divide and conquer” strategy
essentially treating ASR and NLU as separate components in a two-
stage pipeline of processing. Variants of this two-stage strategy in-
clude passing n-best output of the ASR or a lattice subgraph of the
search space [14] to intent determination, in order to alleviate the
potential errors in the 1-best ASR output sequence.

In contrast, our proposed approaches train the entire pipeline
end-to-end by either jointly optimizing the two stages for intent clas-
sification (Section 3.1) or directly predicting the intent given the au-
dio input signal (Section 3.2).

3.1. Finetuning Pretrained Acoustic and Text Classifiers

In the first proposed approach, the model can be thought of as con-
sisting of two components which are pretrained and then finetuned
jointly to minimize the intent classification error (Eq. (1)) in the fi-
nal stage of training. The first of the two components consists of
an end-to-end acoustic model, so unlike the conventional approach,
beam search decoding is never done and a pronunciation dictionary
and language model are not required.

In this work, the acoustic model component is a grapheme-based
network with convolutional and recurrent layers trained with Con-
nectionist Temporal Classification (CTC) [15]. CTC is a sequence
based objective [16] for recurrent neural networks (RNNs) that does
not require a predetermined alignment of input frames to output la-
bels. An alignment between inputs and output label sequences is
learned during training, obviating the need for a frame-level align-
ment generated by an existing ASR system. Other potential choices
for the acoustic model component include RNN transducers [17] and
attention-based networks [18].

Once the acoustic model component has been pretrained with
CTC, the softmax probabilities over graphemes output by the acous-
tic model component are fed directly into the second component
which processes them to make an intent prediction. With the param-
eters of the acoustic model component fixed, a deep text classifier is
trained with a set of intent labeled data to predict posterior probabil-
ities over the set of intents P (C|Y ) given the softmax probabilities
output by the acoustic model component Y . In this work, the text
classifier component is a grapheme-based CNN [19].

After pretraining the text classifier component on the softmax
outputs from the pretrained acoustic model component, we fine-
tune the entire architecture using the negative log-likelihood crite-
rion with the full set of intent labeled data. The proposed end-to-end
architecture is illustrated in Figure 1. During this final finetuning
step all parameters of the model are optimized for the intent clas-
sification objective, Eq. (1), unlike the conventional approach in
which the acoustic model, language model, and NLU classifier are
all trained independently with different objectives.

One advantage of this approach over the direct training ap-
proach described in Section 3.2 is that it leaves open the possibility
of extracting named entities like account numbers, a type of service
or product, or a persons name by further processing the sequence
of softmax probabilities over graphemes extracted from the output
layer of the acoustic model component.

3.2. Direct Training of Audio-to-Intent

The approach proposed in Section 3.1 initializes an audio-to-intent
model with a pretrained end-to-end ASR system and a grapheme-
based text classifier. While this is likely to provide a well-initialized

6190



LSTM Softmax
Probabilities

Log-spectrum Intent...

2D
Convolution

1D
Convolution

Fig. 1. Diagram of the proposed audio-to-intent architecture for semantic classification. The acoustic model component and text classification
component can be pretrained separately and then finetuned together as a single model as described in Section 3.1. Alternatively, the entire
model can be trained directly from random initialization to predict the semantic class given the audio input as described in Section 3.2. In
that case, the model is not interpreted as having acoustic model and text classification components explicitly.

model for a potentially difficult to optimize objective of predict-
ing the intent given the audio signal input, it still requires signifi-
cant amounts of transcribed data for training the end-to-end acous-
tic model. Reducing the training data requirements to include only
intent labeled data is highly desirable since human transcription is
expensive.

We address this issue in a straightforward way by proposing to
directly train the model to predict the intent given the audio input
signal starting from a random initialization. This approach performs
spoken language understanding entirely without speech recognition.
While a variety of architectures can be conceived of, and there is no
constraint to use the same architecture proposed in Section 3.1, we
have chosen to do so for this initial exploration. The architecture
is illustrated in Figure 1 and layers are described in Table 1. Note
that the softmax function after the LSTM layers is optional and not
required when CTC pretraining is not applied. Further details of the
architecture we experiment with are described in Section 4 along
with the rest of experimental setup.

4. EXPERIMENTS

We evaluate our approach on a customer care call classification task.
Specifically, this task is from a prompt asking a customer to confirm
they are calling about the account number on record. The user’s
responses are not restricted to contain a predetermined set of re-
sponses. This is in contrast to a Keyword Search (KWS) task for
intent where the utterances are expected to contain predetermined
phrases (e.g. [20]). The system is text-independent and the user is
encouraged to speak naturally.

Each customer’s answer corresponds to one of 15 intent cate-
gories, which are annotated by either human (HAU, human assisted
understanding) or our previous spoken understanding (two-stage
pipelined ASR+Intent Classification) system (SLU). Intent clas-
sifications made with high confidence are handled by the virtual
assistant. When the system is unable to determine the customer’s
intent with a high enough confidence score, the call will be routed to
a human agent and the customer’s intent would be annotated man-
ually without the utterance being transcribed (HAU). This implies
that utterances annotated using the SLU system are typically simpler
than those that fail over to the HAU system. We selected utterances
labeled with one of 15 different intents which are mainly comprised
of responses confirming the account is correct (“true”) or stating it is
incorrect (“false”). Other examples of classes include “live agent”,
“noise”, “Spanish”, “garbled”, “don’t know”, “account correction”,
“live agent + true”, “confused”, “no match” and “not talking to me”.

Log-spectrum features are extracted from the 8kHz speech sig-
nal. Utterances longer than 30 seconds are truncated to facilitate
batch processing on the GPU. We use a combination of HAU and
SLU data for training, including 100k HAU, 500k HAU, 500k HAU

+ 500k SLU, and 1 million HAU. The validation and test sets consist
of 2987 and 8080 utterances that have been human annotated with
the correct intent label, respectively.

We compare to a baseline built following the conventional ap-
proach of cascading an ASR system and SVM text classifier. The
ASR system consists of an n-gram language model and hybrid DNN
acoustic model trained with the cross-entropy criterion followed by
the state-level Minimum Bayes Risk (sMBR) objective. The SVM
text classifier was trained with word n-gram features from ASR hy-
potheses and hinge loss. Decoding was performed with a wide beam
setting. The baseline system obtains an accuracy of 96.45% on the
test set.

4.1. Finetuning With Pretrained Models

For pretraining the acoustic model component with CTC, each tran-
scription is preprocessed as follows: 1) lowercase all characters 2)
convert English numerals to words 3) separate all words with spaces
4) remove all characters outside the predefined alphabet which
includes lowercase characters, space, hyphen, apostrophe, and a
“blank” symbol for CTC. We use approximately 400 hours of tran-
scribed data collected from customer care applications that has been
anonymized for pretraining the CTC acoustic model component
and a validation set of approximately 5000 utterances. We fur-
ther augment the training data with two publicly available datasets,
Switchboard and Fisher, which contain approximately 300 and 2000
hours of data respectively.

Details of the entire audio-to-intent (A2I) network architecture
are given in Table 1. For details of the layers corresponding to the
CTC acoustic model component, refer to layers 1-7. Convolutional
layers 1 and 2 have “same” padding and batch normalization [21].
Bidirectional LSTM layers 3-6 are followed by sequence-wise batch
normalization [22]. We used the deepspeech.torch [23] implementa-
tion for pretraining the acoustic model component with the CTC ob-
jective. Stochastic gradient descent (SGD) with a fixed initial learn-
ing rate of 0.00015 and Nestrov momentum of 0.9 were used. The
learning rate was annealed twice by a factor of 2 when the character
error rate on the validation data stopped decreasing. The batch size
was 20.

For pretraining the grapheme-based CNN text classifier com-
ponent we use 100k HAU labeled utterances. Inputs are 30-
dimensional outputs from the pretrained CTC acoustic model com-
ponent and the input feature vector length is truncated at 1014 for
each utterance. For details of the layers corresponding to the text
classifier component, refer to layers 8-16 in Table 1. The text clas-
sifier component was implemented in PyTorch. The network was
trained with intent labeled data and negative log-likelihood loss for
50 epochs with a learning rate of 0.0005 and batch size of 20.

After the acoustic model and text classifier components had been
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Layer Configuration

1 Conv 2D # maps:32, K:(21,11), S:(2,2), BN
2 Conv 2D # maps:32, K:(11,11), S:(2,1), BN
3 Bi-LSTM # hidden units:500, BN
4 Bi-LSTM # hidden units:500, BN
5 Bi-LSTM # hidden units:500, BN
6 Bi-LSTM # hidden units:500, BN
7 Fully-connected Output dim:30
8 Conv 1D # maps:256, K:7, S:1, MP:3
9 Conv 1D # maps:256, K:7, S:1, MP:3
10 Conv 1D # maps:256, K:3, S:1,
11 Conv 1D # maps:256, K:3, S:1,
12 Conv 1D # maps:256, K:3, S:1,
13 Conv 1D # maps:256, K:3, S:1, MP:3
14 Fully-connected Output dim:1024, DO
15 Fully-connected Output dim:1024, DO
16 Fully-connected Output dim:15

Table 1. Specification of the network architecture used with
the following abbreviations - K:kernel, S:stride, MP: MaxPooling,
BN:BatchNorm, DO:Dropout

Model Test Acc.

ASR+SVM Baseline 96.45%
Finetuning A2I 100k HAU Train 97.80%

A2I 500k HAU Train 98.07%
A2I 500k HAU 500k SLU Train 97.70%
A2I 1m HAU Train 98.02%

Direct training A2I 100k HAU Train 96.56%
A2I 500k HAU Train 97.41%
A2I 500k HAU 500k SLU Train 97.03%
A2I 1m HAU Train 97.51%

Table 2. Test Set Accuracies for audio-to-intent models after fine-
tuning of pretrained acoustic and text classifier components, and for
models directly trained from random initialization to predict intent
given audio input. 100k HAU labeled training samples were used for
pretraining the text classifier component of the finetuned models.

pretrained separately, all layers in the A2I network were jointly op-
timized in a finetuning phase using intent labeled data and negative
log-likelihood loss. The network was finetuned with SGD using a
learning rate of 0.0005 until accuracy on the validation set stopped
improving. The batch size was 15. The results for finetuning A2I
models starting from pretrained acoustic and text classifier compo-
nents are shown in Table 2. Prior to beginning finetuning, the com-
bination of the pretrained acoustic model and text classifier compo-
nents obtained an accuracy of 96.68% on the test set.

4.2. Direct Training

We used the same architecture and training data for direct training
of A2I models as was used for finetuning of pretrained component
models. All model parameters, layers 1-16 in Table 1, started from
random initialization. No transcribed speech data was used for train-
ing. We followed the same training procedure that was used when
finetuning the pretrained models with intent labeled data described
in Section 4.1. Figure 2 shows the accuracy on the validation set as
the network learns with different amounts of training data. The re-
sults on the test set for directly training the A2I models are shown in
Table 2.
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Fig. 2. Validation accuracy for A2I models directly trained from
random initialization with different amounts of training data. The
plot is truncated at 125k minibatches though training continued.

5. DISCUSSION

As expected, the finetuned models outperformed the A2I models
directly trained from random initialization. Both methods outper-
formed the baseline. Finetuning was very effective at further reduc-
ing the intent classification error rate compared to simply stacking
the pretrained components without any further training. With the
100k HAU labeled training set, intent accuracy was increased from
96.68% for the combined pretrained models to 97.8% after finetun-
ing. We also observe that, increasing the training data from 100k
to 500k samples improves accuracy for both the finetuning and di-
rect training approaches, however the improvements in accuracy are
larger for the direct training case. We believe the reason increasing
the training data for the directly trained model is more beneficial is
because it starts from a random initialization, where as the finetuned
model has already benefited from the initialization obtained through
CTC pretraining with a significant amount of transcribed data. Re-
sults reported for the experiments with 1 million samples are from
partial runs and may have benefited from further training if time had
allowed. When SLU labeled data is included in training, the ran-
domly initialized network rapidly shifts to predicting the majority
class for all inputs at the beginning of learning and we observe a
higher initial accuracy for the 500k HAU + 500k SLU line in Fig-
ure 2 than for the strictly HAU labeled data. We suspect this is due to
the SLU labels being noisy and ultimately the network trained with
both SLU and HAU data was not as accurate as the one trained only
on HAU data.

The two classes corresponding to either confirming an account
number is correct or incorrect make up approximately 90% of the test
data, so models still have to perform well on the remaining classes
to achieve accuracies in the high nineties.

6. CONCLUSIONS

We have proposed an approach for end-to-end semantic classifica-
tion without ASR. We evaluated the proposed approach on a cus-
tomer care call classification task and compared to a conventional
setup in which ASR and an SVM text classifier are chained together.
The proposed methods outperformed the baseline even though they
do not require a conventional ASR system.
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