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ABSTRACT

In recent years, neural networks (NN) have achieved remark-
able performance improvement in text classification due to
their powerful ability to encode discriminative features by
incorporating label information into model training. Inspired
by the success of NN in text classification, we propose a
pseudo-supervised neural network approach for text cluster-
ing. The neural network is trained in a supervised fashion
with pseudo-labels, which are provided by the cluster labels
of pre-clustering on unsupervised document representations.
To enhance the quality of pseudo-labels, a consensus analysis
is employed to select training samples for the neural network.
The experimental results demonstrate that the proposed ap-
proach can improve the clustering performance significantly.

Index Terms— Text clustering, pseudo-supervised, con-
sensus analysis

1. INTRODUCTION

Text clustering is a fundamental task in text mining and
information retrieval that aims to group similar documents
into clusters [1]. In general, the documents are first repre-
sented as fixed-dimensional feature vectors, and clustering
algorithms, such as K-means and hierarchical clustering al-
gorithms, are subsequently performed to partition the doc-
uments into groups. The most naı̈ve but common approach
for document representation is bag-of-words, such as the
Term Frequency−Inverse Document Frequency (TF−IDF)
[2]. Though simple and feasible, TF−IDF does not discover
the latent semantic structure information and suffers from
data sparsity caused by high dimensionality. To overcome
the drawbacks of bag-of-words, researchers have developed a
series of dimensionality reduction techniques that uses term
co-occurrence statistics to capture the latent semantic struc-
ture of documents and represent them as low-dimensional
vectors. The typical methods include Latent Semantic Analy-
sis (LSA) [3], Probabilistic Latent Semantic Analysis (PLSA)
[4] and Latent Dirichlet Allocation (LDA) [5]. An alternative
approach is to use neural network-based topic models, such
as the Replicated Softmax [6], Neural Autoregressive Density
Estimators (DocNADE) [7] and the Over-Replicated Softmax

[8]. Although the abovementioned approaches are aimed at
capturing salient statistical patterns in the co-occurrence of
words within documents, they do not take advantage of recent
advances in distributed word representations that can capture
semantically meaningful regularities between words [9][10].
To encode distributed semantic features of documents based
on word embeddings, Le and Mikolov proposed Paragraph
Vectors, which can predict the words in each document [11].
In [12], Moody proposed lda2vec that embeds both word
vectors and document-level mixtures of topic vectors into the
same space and trains them simultaneously.

All of the aforementioned models are unsupervised. Com-
pared with the unsupervised models, the supervised ones usu-
ally generate more discriminative hidden topic features. The
distributed representations based on Convolutional Neural
Networks (CNN) are able to learn n-gram features through
multiple filters [13][14], and the ones based on Recurren-
t Neural Networks (RNN) perform excellently at learning
sequential information from word sequences [15][16]. To
capture more contextual information than the conventional
fixed-size filters in CNN, Lai et al. proposed the Recur-
rent Convolutional Network (RCNN) [17], which captures
the contexts around each word with bidirectional recurrent
structure and later constructs the representation of text with a
convolutional architecture.

The CNN, RNN and RCNN mentioned above are pri-
marily designed for specific tasks, such as text classification,
where predefined labels are provided for modeling training.
In contrast, text clustering, a typical unsupervised task, has
no predefined labels available during training. To benefit from
the discriminative ability of these supervised neural network
models, we propose a pseudo-supervised training approach
in this paper. In contrast to conventional supervised train-
ing, the supervision information provided for NN training is
from pseudo-labels, which are generated by pre-clustering on
unsupervised document representations. To suppress noise in
the pseudo-labels, we propose a consensus analysis approach,
which generates more appropriate pseudo-labels based on two
pre-clusterings. The documents assigned to consistent cluster
labels in the two pre-clusterings are selected as the training
samples for NN, while the others are regarded as noise sam-
ples. The experiments are carried out on the Fisher corpus,
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and the results have demonstrated the effectiveness of the pro-
posed method.

2. BACKGROUND

Before going into the details of our framework, we provide
some background on four popular unsupervised document
modeling methods that are relevant to our work.
LSA: Let X be the term-document matrix where elemen-
t (i, j) describes the weight of term i in document j. LSA
employs singular value decomposition (SVD) on X to find
the latent semantic structure:

X=UΣVT (1)

where Σ = diag(σ1, σ2, ..., σl) are the singular values. S-
electing the top r largest singular values, LSA uses the cor-
responding singular vectors from U to embed the document
features into r-dimensional vectors.
LDA: LDA defines a generative data model that represents
each document m as a multinomial distribution θm over latent
topics, where each topic k is a multinomial distribution ϕk

over words. Both multinomial distributions satisfy Dirichlet
prior distributions. Following the procedure of Gibbs sam-
pling [18], the value of θm that is the low-dimensional repre-
sentation of document m can be inferred.
DocNADE: For a sequence of words, DocNADE models the
joint probability of words through the probability chain rule:

p(v) =

n∏
i=1

p(vi|v<i) (2)

where v= [v1,v2,...,vn] are the observation sequences and
v<i is the subvector [v1,v2,...,vi−1]. DocNADE assumes
that each conditional probability p(vi|v<i) can be modeled
by a feedforward neural network, where the probability of
the ith word vi is based on a position dependent hidden lay-
er hi(v<i) that extracts a representation out of all previous
words v<i. Once the model is trained, a latent representation
can be extracted from a new document v∗ by computing the
value of its hidden layer hi(v

∗).
Lda2vec: The lda2vec model stems from Skip-gram [9],
which uses each pivot word to predict target words within a
certain range before and after the pivot word. For each pair
of pivot word wj and target word wi, Skip-gram samples n
negative samples and calculates the likelihood as follows:

Lij = log σ(wj ·wi) +

n∑
l=1

log σ(−wj ·wl) (3)

where σ refers to the sigmoid function; in lda2vec, the pivot
word wj in Lij is replaced by a context vector cj , the sum of
wj and document vector dj . The document vector dj , shared
by all pivot-target pairs in a document, is a mixture of a set
of latent topic vectors t1, t2, ..., tk. In addition, the document
weights over latent topics are optimized by a Dirichlet likeli-
hood.

3. PSEUDO-SUPERVISED APPROACH

The overall architecture of the proposed approach is depicted
in Fig.1. Given the raw document collection D, the objective
is to group these documents into clusters Cfinal. Overall, the
proposed framework mainly consist of three parts: the gen-
eration of consensus samples, pseudo-supervised training of
RCNN with consensus samples, and clustering based on dis-
tributed semantic features.

3.1. Consensus Samples Generation

The generation of consensus samples involves two main step-
s. The first step is to align the cluster labels of two pre-
clusterings. Secondly, the documents with consistent clus-
ter labels in the two pre-clusterings are chosen as consensus
samples, while the others are regarded as noise samples. In
the first step, two pre-clusterings C1 and C2 are obtained by
performing the clustering algorithm on feature sets F1 and
F2, respectively, which are learned by two different unsuper-
vised models chosen from among those described in section
2. The number of clusters r is a preset value. Next, a map-
ping function is employed to map each cluster label in C2 to
the best-matched cluster label in C1. This computation is e-
quivalent to the problem of finding the maximum weighted
bipartite matching [19] in a bipartite graph G = (U, V,E),
where the vertex sets U and V contain the cluster labels of
C1 and C2, respectively, each edge in E connects a vertex in
V to one in U , and the weight of each edge is the number of
documents shared by both vertexes. The best mapping can
be achieved using the Kuhn-Munkres algorithm [20]. Since
the number of clusters provided by C1 and C2 are equal, the
Kuhn-Munkres algorithm will match each cluster in C2 to a
unique cluster in C1.

In the second step, the documents with consistent cluster
labels in C1 and C2 are selected. Given a document di, and
letting αi and βi be the cluster labels provided by C1 and C2,
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Fig. 1. The pseudo-supervised approach for text clustering.
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respectively, we generate the consensus samples as follows:

di

{
∈ Dconsensus, if αi = map(βi)
/∈ Dconsensus, if αi 6= map(βi)

(4)

where map(βi) is the mapping function described above. In
this manner, we can obtain the document set Dconsensus whose
cluster labels have less noise and high reliability. The doc-
uments with inconsistent cluster labels in C1 and C2 are ex-
cluded from Dconsensus.

3.2. RCNN Training

The RCNN is trained on the consensus samples Dconsensus, us-
ing the cluster labels as pseudo-labels for training. Based on
the work of Lai et al. and Wen et al. [21], the RCNN in our ap-
proach mainly consists of five parts: embedding layer, recur-
rent layer, convolutional layer, pooling layer and regression
layer. In the embedding layer, the input words are mapped to
a matrix x ∈ Rd×n , whose ith column xi ∈ Rd corresponds
to the embedding of the ith word. In the recurrent layer, the
word embeddings are fed into the bidirectional LSTM [22] ar-
chitecture to generate the hidden states. We concatenate word
embedding xt with LSTM hidden state (h←t ,h

→
t ) at time step

t to obtain the contextual representation of the tth word:

x̃t = h←t ⊕ xt ⊕ h→t (5)

where ⊕ is the concatenation operation. In the convolutional
layer, the convolution operation is employed to generate the
representations p1,p2, ...,pn−w+1 as follows:

pi = ReLU(W ∗ x̃i:i+w−1+b) (6)

where ∗ refers to the convolution operation, W is the convo-
lution weights, b is the bias, and w is the filter width. ReLU
[23] is chosen as the activation function. The filter width w
is fixed at 1 in this study, since the bidirectional LSTM has
already obtained the context information around each word.
To preserve more important information, we adopt a k-max
pooling operation in the pooling layer, which extracts the top
k maximum features instead of only one from each feature
map. As a result, we can obtain a feature vector s ∈ Rl,
where l = k × d1 (d1 denotes the dimensionality of pi):

s = k-max(p1,p2, ...,pn−w+1) (7)

The last layer of RCNN is a logistic regression function:

y = softmax(Wos + bo) (8)

where Wo is the weight matrix and bo is the bias. The output
y ∈ Rr is the probability distribution over the r clusters.

3.3. Clustering

With the given document collection D, we utilize the trained
RCNN to obtain the semantic representations s, which are

the output features of the pooling layer. Subsequently, a tra-
ditional clustering algorithm is performed on s to categorize
the documents into r clusters. We adopt the agglomerative
hierarchical clustering (AHC) algorithm [24]. The AHC al-
gorithm can obtain slightly better performance than K-means
algorithm on this dataset. Besides, AHC is not affected by
initial cluster centers as K-means is, which makes a fairer
comparison between different systems. The linkage criteri-
on adopted in AHC is Ward, which minimizes the variance of
the clusters being merged.

4. EXPERIMENTS

4.1. Dataset

The experiments were conducted on the Fisher English cor-
pus, which is released by LDC (Linguistic Data Consortium)
[25]. The Fisher English corpus consists of 11699 recorded
telephone conversations, with corresponding text transcrip-
tions. This corpus contains 40 topics in total, and each con-
versation is assigned to a specific topic. We employed the text
transcriptions as the experimental documents for text clus-
tering, with 117∼560 documents for each topic. The text
preprocessing included tokenization and stop-words removal.
We also removed the words whose document frequency (DF)
is below 5. The average length of the documents is approxi-
mately 400 words after text preprocessing.

4.2. Hyperparameter Settings

In this section, we describe the system configurations, name-
ly, the configurations of the baseline systems described in sec-
tion 2 and the proposed pseudo-supervised approach.

In LSA, we retain the top 100 singular values to form the
new subspace. In LDA, we set the number of latent topics to
200. In DocNADE, the hidden layer size is set to 200, and
the sigmoid is chosen as the activation function. In lda2vec,
the dimensionality of embedding vectors is set to 300, and the
number of latent topics is set to 200.

The RCNN model is implemented by Tensorflow [26],
and trained by Adam [27] with a learning rate 0.001. We
initialize the word vectors with 300-dimensional pre-trained
word2vec vectors. All the word vectors are fine-tuned along
with other model parameters during training. The dimension-
ality of LSTM hidden state h←t and h→t are both set to 256.
In the convolutional layer, 256 filters are used. The value of
k for k-max pooling is 3. To prevent co-adaptation, a dropout
rate of 0.5 is employed on the input of LSTM and before the
logistic regression layer.

4.3. Results and analysis

The accuracy (ACC) and the normalized mutual information
(NMI) [28] metrics are used to measure the clustering perfor-
mance, which compare the clustering results with the topic
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labels provided by LDC. The evaluations were conducted for
the cluster numbers ranging from 30 to 50 with a step size of
10. Table 1 lists the clustering results on five unsupervised
document features respectively, showing that DocNADE per-
forms better than other document modeling methods in most
cases. By contrast, the relatively poor performance of TF-IDF
demonstrates the shortcomings of bag-of-words.

In Table 2, we report the clustering results of several dif-
ferent pseudo-supervised frameworks. The first four frame-
works are based on consensus analysis, where two different
unsupervised models are employed to obtain the consensus
samples. The last two frameworks employ pseudo-labels for
RCNN that are generated by pre-clustering on a single unsu-
pervised model without consensus analysis. Table 2 shows
that the pseudo-supervised RCNN based on consensus anal-
ysis yields noticeably better performance than the baseline
systems with respect to both ACC and NMI. In contrast, the
last two frameworks bring about no improvement over base-
line models, despite more training samples for RCNN than
the first four frameworks. To more clearly compare pseudo-
supervised approaches to baselines, we randomly chose five
topics and report the two-dimensional t-SNE [29] embedding
of document features in Fig.2. This figure shows that the
consensus-based pseudo-supervised semantic features have
more clear-cut margins among different topics and a higher
degree of intra-cluster similarity than unsupervised features.

The results indicate that the proposed pseudo-supervised
approach based on consensus analysis is an effective approach
to obtain semantic features for text clustering. The perfor-
mance improvement benefits from the distinguishing ability
of RCNN, as well as the pseudo-labels provided by the con-
sensus samples. Compared with the pseudo-labels provided
by an individual unsupervised model, the pseudo-labels pro-
vided by the consensus analysis are more stable and reliable
in quality, since the documents with noisy cluster labels are
excluded from training samples. Furthermore, the RCNN,
which is a kind of discriminative model, can learn more dis-
tinguishing features of the clusters, since it incorporates the
cluster label information into the training objective. As a re-
sult, the documents potentially belonging to the same catego-
ry will be closer to each other in the semantic space construct-
ed by the pseudo-supervised RCNN.

5. CONCLUSIONS

This paper introduces a pseudo-supervised approach for text
clustering based on the distributed semantic features learned
by the RCNN, which is trained with pseudo-labels. Exper-
iments conducted on the Fisher English corpus demonstrate
the effectiveness of this approach, which outperforms state-
of-the-art systems for a variety of cluster numbers. Our ap-
proach is a flexible framework in which different unsuper-
vised models can be employed; furthermore, the RCNN can
be replaced by other neural network architectures as needed.

Table 1. ACC(%)/NMI(%) of baseline systems
30 40 50

LSA 69.08/78.29 80.43/81.29 76.39/80.14
LDA 72.34/78.95 81.42/81.97 74.85/80.13
DocNADE 74.20/80.93 80.70/82.47 77.28/81.40
lda2vec 72.74/79.77 80.37/80.91 74.95/79.73
TF-IDF 64.52/71.62 73.05/74.34 69.53/74.23

Table 2. ACC(%)/NMI(%) of pseudo-supervised frameworks
30 40 50

LSA-LDA 76.39/84.14 89.19/89.65 84.80/89.09
LSA-lda2vec 76.61/85.12 90.75/91.17 83.20/88.81
LDA-DocNADE 76.66/84.37 89.64/90.09 84.84/88.18
DocNADE-lda2vec 77.50/86.06 87.43/89.36 84.24/88.39
LDA 72.33/78.96 81.76/82.38 75.18/80.48
DocNADE 74.28/81.07 80.81/82.65 77.41/81.73

(a) (b)

Fig. 2. The two-dimensional t-SNE embedding of document
features under cluster number 40, where (a) shows the fea-
tures inferred by LDA, (b) shows the pseudo-supervised fea-
tures based on LSA-LDA consensus analysis.

Future research will address the selection of more effective
training samples and the improvement of pseudo-labels.
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