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ABSTRACT

This work focuses on the use of acoustic cues for modeling
turn-taking in dyadic spoken dialogues. Previous work has
shown that speaker intentions (e.g., asking a question, uttering
a backchannel, etc.) can influence turn-taking behavior and
are good predictors of turn-transitions in spoken dialogues.
However, speaker intentions are not readily available for use
by automated systems at run-time; making it difficult to use
this information to anticipate a turn-transition. To this end,
we propose a multi-task neural approach for predicting turn-
transitions and speaker intentions simultaneously. Our results
show that adding the auxiliary task of speaker intention pre-
diction improves the performance of turn-transition predic-
tion in spoken dialogues, without relying on additional input
features during run-time.

Index Terms— Multi-task learning, recurrent neural net-
works, LSTM, turn-taking, spoken dialogues, speaker inten-
tions

1. INTRODUCTION

Dialogue agents must be able to engage in human-like con-
versations in order to make interactions with spoken dialogue
systems more natural and less rigid. Turn-management is an
essential component of conversations as it allows participants
in a dialogue to exchange control of the floor. Studies have
shown that conversation partners rely on both syntactic and
prosodic cues to anticipate turn-transitions [1, 2, 3]. Syntactic
cues include keywords and semantics of an uttered sentence.
Prosodic cues include the final intonation of a clause, pitch
level, and speaking rate. In this work, we assess the efficacy
of using acoustic cues for anticipating turn-switches in dyadic
spoken dialogues. Given a single utterance, our goal is to use
acoustic cues to predict if there will be a switch in speakers
for the upcoming utterance or not.

Modern spoken dialogue systems generally rely on sim-
ple thresholding approaches for modeling turn-taking [4, 5,
6]. However, turn-management is a complex phenomenon,
in which participants in a conversation rely on multiple cues
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to anticipate turn changes or end-of-turns. We anticipate that
interactions between humans and machines can be improved
if dialogue systems can accurately anticipate turn-switches in
spoken conversations.

Turn-taking in conversations can take many forms. The
two basic turn-taking functions are hold and switch. Given
an utterance in a conversation, a hold indicates that the next
utterance will be uttered by the same speaker while a switch
indicates that the next utterance will be uttered by the other
speaker in the conversation. Turn-switches can be further
divided into smooth and overlapping switches [3]. Smooth
switches occur when there is silence between two consecu-
tive utterances from two speakers. Overlapping switches oc-
cur when a speaker starts uttering a sentence before the other
speaker finishes uttering his/her sentence.

Previous works built models that used both acoustic and
syntactic information to anticipate turn-changes to help make
turn-management more natural in spoken dialogue systems
[3, 5]. Gravano and Hirschberg showed that raising contours
of intonation correlates with turn-transitions while flat into-
nations correlates with turn-holds [3]. They also showed that
certain keywords (e.g., “you know. . . ”) and textual comple-
tion have good correlations with turn-management functions.
In addition to the usefulness of syntactic and acoustic cues
for modeling turn-taking, previous work showed that speaker
intentions (e.g., ask a question, utter a backchannel, etc.) can
be good predictors of turn-transitions in dialogues [7, 8]. For
example, a switch in speaker turns is more likely to occur
after encountering a question than it is to occur after encoun-
tering a statement. Although speaker intentions (sometimes
referred to as dialogue acts) are useful for predicting turn-
transitions [7, 8], they require human annotations and are not
readily available during run-time.

We propose the use of a multi-task Long Short-Term
Memory (LSTM) network that takes in a sequence of acous-
tic frames from a given utterance and predicts turn-transitions
and speaker intentions simultaneously. During training time,
the network is optimized with a joint loss function using
ground-truth labels for turns and intentions. During test time,
the network makes two predictions, one of which can be dis-
carded or used by other modules in a spoken dialogue system.
The advantage is that this allows the model to use represen-
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tations that encode information about speaker intentions for
anticipating turns changes. Our experiments demonstrate that
adding the detection of speaker intentions as a secondary task
improves the performance of anticipating turn-transitions.

2. RELATED WORK

The problem of modeling turn-taking in conversations has
been extensively studied in the literature. In this section, we
give an overview of related works that focused on speech or
textual interactions (i.e., no visual cues). Our work comple-
ments previous work by showing that a model that uses acous-
tic cues for predicting turn-switches benefits from adding
speaker intentions prediction as an auxiliary task using the
multi-task learning framework.

One line of work looked at the use of acoustic and lexi-
cal features for modeling turn-taking behavior [4, 5, 9, 10].
Liu et al. [5], Masumura et al. [9], and Ishimoto et al. [10]
looked at the problem in Japanese conversations while Maier
et al. [4] looked at the problem in German conversations. Ma-
sumura et al. proposed using stacked time-asynchronous se-
quential networks for detecting end-of-turns given sequences
of asynchronous features (e.g., MFCCs and words) [9]. Ishi-
moto et al. investigated the dependency between syntactic and
prosodic features and showed that combining the two features
is useful for predicting end-of-turns [10]. Liu et al. built a Re-
current Neural Network (RNN) to classify a given utterance
into four classes that relate to turn-taking behavior using joint
acoustic and lexical embeddings [5]. Finally, Maier et al. built
an LSTM with a threshold-based decoding and studied the
trade-off between latency and cut-in rate for end-of-turn de-
tection in simulated real-time dialogues [4]. The conclusion
reached by this line of work was that end-of-turn detection
models benefit from augmenting classifiers that use acoustic
information with lexical information.

Another line of work focused solely on the acoustic
modality, pointing out that using lexical features would (1)
require access to a speech recognition pipeline and (2) bias
the classifiers due to varying prompt types [11]. Arsikere
et al. compared the effectiveness of acoustic features (e.g.,
pitch trends, spectral constancy, etc.) for predicting end-of-
turns in two datasets that differed in prompt type (one is slow
and deliberate, the other is fast and spontaneous) [11]. They
found that the same acoustic cues were useful for detecting
end-of-turns for both prompt types.

A final line of work used dialogue act information when
modeling turn-taking behavior [7, 8, 12]. Guntakandla and
Nielsen built a turn-taking model that relied on transcribed
segments, intention labels, speaker information, and change
in speaker information to predict turn-transitions in dia-
logues [8]. Meshorer and Heeman used current and past
speaker intention labels along with two new features, rel-
ative turn length and relative floor control, summarizing
past speaker behavior for predicting turn-switches in dia-

logues [7]. Finally, Heeman and Lunsford showed that turn-
taking behavior not only depends on previous and upcoming
speech act types, but also depends on the nature of a dialogue;
suggesting that turn-taking events should be split into several
groups depending on speech act types and the context of the
dialogue [12].

The works of Meshorer and Heeman [7], Guntakandla
and Nielsen [8], and Heeman and Lunsford [12] suggested
that speaker intentions can be useful for predicting turn-
transitions. However, speaker intentions are not readily
obtainable from utterances and require manual human an-
notations. We are interested in studying how we can aug-
ment acoustic systems with speaker intention information,
available during training time, to improve performance of
turn-transitions predictions.

3. PROBLEM SETUP

We follow the work of Meshorer and Heeman [7] and rep-
resent a conversation between two speakers as a sequence of
utterances, taking the following form:

u1, u2, . . . , uN

where each ui is an utterance in the conversation. The se-
quence of utterances are sorted in terms of start talk time. Let
spkr(·) be a function that returns the speaker of a given utter-
ance. Given ui, the goal is to predict whether the following
statement is true or false:

spkr(ui) 6= spkr(ui+1)

If the statement is true, then a turn-switch will take place and
the other speaker will speak next. If the statement is false,
then the current speaker will continue speaking.

Each utterance in the sequence represents a complete sen-
tence, containing both acoustic and lexical cues, and varies
in duration. We assume that we know the end-points of each
utterance as in [7, 8, 11]. Utterance end-points can be read-
ily obtained from modern voice-activity detection algorithms
or using an end-of-utterance detection systems (e.g., [6]). We
leave the problem of combining our multi-task model with
end-of-utterance detection for future work and focus on the
problem of predicting turn-switches from acoustic cues for a
given utterance.

4. DATASET AND FEATURES

4.1. Dataset

We use the Switchboard corpus [13] to model turn-taking be-
havior in spoken dialogues. The corpus consists of dyadic
telephony conversations between participants who were asked
to discuss various topics. We use the annotations provided
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Table 1: Mapping dialogue act classes to intention classes.

SwDA classes Intention classes

sd, h, bf statement
sv, ad, sv@ opinion
aa agree
%, %- abandon
b, bh backchannel
qy, qo, qh question
no, ny, ng, arp answer

by the Switchboard Dialog Act Corpus1 (SwDA), since we
are interested in utilizing speaker intentions (i.e., dialogue act
types). The goal of SwDA corpus was to extend the original
Switchboard corpus with dialogue act types that summarize
turn information in the conversations.

However, the SwDA corpus does not map dialogue acts to
timing information in the original media files of the Switch-
board corpus. It only maps dialogue acts to lexical and turn
information. We augment the SwDA corpus with the NXT
Switchboard corpus [14] to get utterance timing information
from the original media files. The aim of the NXT Switch-
board corpus was to combine major annotations that were per-
formed on the Switchboard corpus and make them accessible
within one framework.

Preparation. We first add binary turn labels (switch/hold)
to each utterance in the dataset. We focus on 7 major dialogue
acts which we obtain by grouping different SwDA classes as
shown in Table 1. The dialogue act groups that we use are
a subset of those used in [7]. We filtered out utterances in
the dataset that do not have corresponding audio segments
(i.e., no timing information). We obtain the final utterances
by trimming the audio of the appropriate speaker channel in
the original media files in accordance to the timings provided
in the NXT Switchboard corpus.

Analysis. The final dataset that we use contains a total of
86,687 utterances. Table 2 shows a summary of the content of
the dataset in terms of turn labels and speaker intentions. As a
first pass to understand the relationship between dialogue acts
and turns, we run a Chi-square test of independence and find
that there is a relationship between dialogue acts and turns,
p < 0.001 (i.e., they are not independent). Note that this
finding is suggestive rather than conclusive; mainly because
our utterances are not independent (they can come from same
speaker). Nevertheless, this finding supports findings in lit-
erature [3, 12], which suggested that speaker intentions influ-
ence turn-taking behavior.

4.2. Features

We use the OpenSMILE toolkit [15] to extract the following
features and their first (left) derivatives using a 25ms Ham-

1https://github.com/cgpotts/swda

Table 2: Total number of utterances that are followed by
holds and switches for each speaker intention class.

Intention Counts (%)
Holds Switches

statement 26,332 (52.2) 12,722 (35.1)
opinion 8,066 (16.0) 5,227 (14.4)
agree 3,997 (7.9) 1,417 (3.9)

abandon 3,887 (7.7) 3,203 (8.8)
backchannel 6,225 (12.3) 10,678 (29.5)

question 752 (1.5) 2,369 (6.5)
answer 1,197 (2.4) 615 (1.7)
total 50,456 36,231

ming window with a shift-rate of 10ms: intensity, loudness,
MFCC, RMS energy, zero-crossing-rate, and smoothed pitch.
As a result, a given signal is represented as a sequence of
42-dimensional feature vectors. The choice of these features
was inspired by their success in previous studies on modeling
turn-taking using acoustic cues [4, 11].

5. METHOD

We use unidirectional LSTM network to model the sequence
of acoustic features and make turn predictions. LSTMs are
able to capture past signal behavior and they have shown suc-
cess in many audio processing applications, such as speech
recognition and computational paralinguistics [6, 16]. In ad-
dition to their ability to capture past signal behavior, LSTMs
are able to capture information relating to timing and differen-
tials (e.g., rising slope); both of which are useful for modeling
turn-taking [3].

Predicting turns can be formulated as a binary classifica-
tion task where the goal is, given an utterance, predict whether
there will be a turn-switch or a turn-hold. We augment this
task given the following problem setup: given an utterance, si-
multaneously predict turn-transitions and speaker intentions.
The model is trained to minimize a joint loss function that
takes the following form:

Ltot = λ1Lturn + λ2Lintent

where Lturn is the loss function for turn predictions, Lintent

is the loss function for speaker intention predictions, Ltot is
the overall loss function, λ1 and λ2 are weights assigned to
control the influence of each loss function. In this work we
set λ1 to 1.0 and λ2 to 0.5.

Baselines. We re-implement the “full model” from [7]
and compare its performance to the proposed approach. The
full model uses a Random Forest classifier with the features
described in Section 2. We also compare our proposed multi-
task approach to a single-task LSTM that is trained to min-
imize Lturn alone. We note that the single-task LSTM ap-
proach is similar to the one used in [4].
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Table 3: Performance comparison of different methods. Re-
sults shown are macro-averages across turn-switches and
turn-holds.

Method Rec. Prec. F1 AUC

Random 50.0 49.6 41.7 45.3
Full model [7] 55.8 56.7 55.4 57.8
LSTM 65.9 65.6 65.5 71.9
MT-LSTM 66.4∗ 66.0 65.8 72.6∗

∗ indicates p < 0.05 under a paired t-test with LSTM.

6. EXPERIMENTS

6.1. Setup

We evaluate performance using 5-fold cross-validation. We
split on conversations, as opposed to utterances, to ensure that
individual speakers do not appear in both the training and test-
ing folds. For each testing fold, we randomly take out 33%
of the training conversations and use them for validation and
early stopping. For each conversation, we perform speaker-
specific z-normalization on the features.

We implement our models using the PyTorch library2. We
optimize the weighted negative log-likelihood loss function
and use RMSProp optimizer to train our models. We use an
initial learning rate of 0.001. At the end of each epoch, we
compute the macro-F1 score on the validation set and reduce
the learning rate by a factor of 2 if there was no improve-
ment from last epoch. We run for a maximum of 100 epochs
and stop training if there was no improvement in validation
F1 score for 5 consecutive epochs. We take a snapshot of the
model after each epoch and select the one that gave the high-
est validation performance.

For each fold, we perform a grid search and pick the
hyper-parameters that maximize validation performance. The
main hyper-parameters of the model are: number of layers
{1, 2} and layer width {32, 64, 128}. Once we have identified
the optimal hyper-parameters for each fold, we train 3 models
with different random seeds and report their ensemble perfor-
mance to minimize variance due to random initialization. We
report the average performance across the five folds.

6.2. Results and Discussion

Table 3 shows the results obtained from our experiments. The
table shows that a single-task LSTM, which uses the input
features described in Section 4.2, outperforms the full model
in all evaluation metrics. We attribute this improvements to
better feature representations and better sequential modeling
abilities of LSTMs. The table shows that a multi-task LSTM,
which is trained using a joint loss function, provides consis-
tent improvements over a single-task LSTM (significant im-
provements under a paired t-test, p < 0.05, in terms of recall

2https://github.com/pytorch/pytorch

Table 4: Detecting turn-switches and turn-holds for each
speaker intention class, as well as the per-class accuracy for
detecting intentions by the auxiliary task.

Turn-Transitions Intentions
F1 (switch) F1 (hold) per-class Acc.

statement 51.4 73.2 39.6
opinion 54.5 70.3 43.1
agree 49.7 66.5 30.4

abandon 67.2 68.3 56.8
backchannel 79.1 51.6 49.6

question 72.2 47.6 50.3
answer 61.1 71.7 43.9

and AUC). This suggests that a turn prediction model can
benefit from representations extracted for detecting speaker
intentions. Next, we study how well our model is able to iden-
tify turn-switches when the switches are smooth and when
they are overlapping. Our model identifies turn-switches with
a recall of 68.5% when the switches are overlapping and iden-
tifies turn-switches with a recall of 68.1% when the switches
are smooth.

Table 4 shows the performance of predicting turn-switches
and turn-holds for each intention class, as well as the accu-
racy of detecting that intention class. The results show that
the model is better able to predict turn-switches when pre-
sented with a backchannel or a question, and is better able to
predict turn-holds when presented with a statement, opinion,
or an answer. This suggests that the performance of the model
depends on the context and nature of a dialogue, and that it
is easier to anticipate turn-switches or turn-holds for some
intentions and not for others.

Table 4 also shows the performance of identifying speaker
intentions by the auxiliary task. The table shows that it is eas-
ier to identify backchannels, questions, or turn-exit signals
(abandon) than it is to identify agreement signals and state-
ments. The auxiliary task obtains an unweighted average re-
call (UAR) of 45.6% on a 7-way classification task (where
chance UAR is 14.3%).

7. CONCLUSION

In this work we showed that a model that uses acoustic fea-
tures for modeling turn-taking in spoken dialogues could ben-
efit from adding speaker intention detection as an auxiliary
task. We also explored how the performance of our turn-
taking model varies depending on speaker intentions. For fu-
ture work, we plan to augment acoustic features with lexical
or phonetic information. We also plan to investigate combin-
ing turn-taking with end-of-utterance detection. Finally, we
plan to add our model to a live spoken dialogue system.
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