
END-TO-END DYNAMIC QUERY MEMORY NETWORK FOR ENTITY-VALUE
INDEPENDENT TASK-ORIENTED DIALOG

Chien-Sheng Wu, Andrea Madotto, Genta Indra Winata, Pascale Fung

Human Language Technology Center
Department of Electronic and Computer Engineering

The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
[cwuak, eeandreamad, giwinata]@ust.hk, pascale@ece.ust.hk

ABSTRACT
In this paper, we propose an end-to-end Dynamic Query
Memory Network (DQMemNN) with a delexicalization
mechanism for task-oriented dialog systems. The added
dynamic component enables memory networks to capture the
dialog’s sequential dependencies by using a context-based
query. Besides, the delexicalization mechanism reduces
learning complexity and it alleviates the out-of-vocabulary
entity problems. Experiments show that DQMemNN outper-
forms original end-to-end memory network models on bAbI
full-dialog task by 3.1% per-response and 39.3% per-dialog
accuracy. In addition, the proposed framework achieves a
promising average per-response accuracy of 99.7% and per-
dialog accuracy of 97.8% without hand-crafted rules and
features.

Index Terms— Task-oriented Dialog Systems, Memory
Network, Delexicalization, Recurrent Neural Network, Natu-
ral Language Processing

1. INTRODUCTION

Task-oriented dialog system has become an increasingly im-
portant research area which requires a machine to understand
the human intent and generate proper answers to accomplish
the assigned tasks via natural language. For instances, they
are required to: understand user request, ask for clarification,
properly issue API calls for querying knowledge base (KB)
and interpret query results. Recently, a corpus called bAbI di-
alog [1] for training end-to-end task-oriented dialog has been
released. The dialog tasks are well-defined in restaurant reser-
vations domain.

Traditionally, these dialog systems have been built as
a pipeline, with modules for language understanding, state
tracking, action selection, and language generation [2, 3].
Even though those systems are known to be stable via com-
bining domain-specific knowledge and slot-filling technique,
they have limited ability to generalize into new domains and
the dependencies between modules are quite complex. On
the other hand, end-to-end approaches using recurrent neural

networks (RNNs) are attractive solutions [4, 5], since they
directly map the dialog history to the output responses. A
key advantage is that the latent memory of RNN can be rep-
resented as a dialog state, obviating the need for hand-crafted
state labels. However, these models may be inherently unsta-
ble over long time sequences because the memories are the
RNN hidden states.

Promising results have been shown by using End-to-End
Memory Network (MemNN) [1, 6, 7], which are neural net-
works with a recurrent attention model over an external mem-
ory. Besides, the multiple hop mechanism over the global
memory is experimentally crucial for good performance on
reasoning tasks. However, one major drawback of MemNN
is that they are insensitive to represent temporal dependen-
cies between memories. We found out two distinct problems
of MemNN in dialog systems: 1) no temporal memory access
and 2) weak entity identification. The former influences the
conversational semantic since the utterance order is not taken
into account. The latter bounds the memory’s reasoning abil-
ity since the model cannot fully identify the dialog entities.

To solve these problems, we propose a novel entity-value
independent framework based on end-to-end Dynamic Query
Memory Networks and a recorded delexicalization mecha-
nism. The former captures time step information in dialogs
by utilizing RNNs between memory layers to represent latent
dialog state and the dynamic query vector. The latter not only
decreases the learning complexity but also makes our system
scalable into new out-of-vocabulary (OOV) KB or new do-
mains. We first outline the key methodologies used (Section
2), and we discuss the related models presented in literature
(Section 3). Then the dataset, the model settings and the ob-
tained results are shown (Section 4).

2. MODEL DESCRIPTION

The two main components of our proposed framework are
Dynamic Query Memory Network and recorded delexical-
ization (RDL). Similarly to [8, 9], the intuition of RDL is
to reduce the learning complexity by replacing entities in
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Fig. 1. Entity-value independent dynamic query memory networks for task-oriented dialog

the raw dialog history with a simplified format. In this way,
DQMemNN can reason logically on the indexed entity types
instead of the actual words based on the information provided
by external KBs. Moreover, the number of system utterances
can be reduced to the size of action template candidates. At
last, DQMemNN outputs the action template is then con-
verted to the final system response by lexicalization. The
details are described below.

2.1. Recorded Delexicalization

We utilize the existing KB information to extract entities from
both user and system utterances. For example, in the restau-
rant reservation domain, we extract seven entity types includ-
ing [NAME, LOCATION, CUISINE, PRICE, PHONE, AD-
DRESS, NUMBER] using simple string matching, since we
have the predefined KB information for all the entity values
including OOV entities. However, we keep the real number
of [RATING] in the utterances and leaves the tasks of sorting
restaurant ranks to the DQMemNN model. Then we replace
each real entity value with its entity type and the order ap-
pearance in the dialog, and we also build a lookup table to
record the mapping. For example, the first user utterance in
Figure 1, “Book a table in Paris for two”, will be transformed
into “Book a table in [LOC-1] for [NUM-1]”. At the same
time, [LOC-1] and [NUM-1] are stored in a lookup table as
Paris and two, respectively. Furthermore, lexicalization is the
reverse of RDL. Based on the lookup table, the delexicalized
entity can always be reversed, replacing the type with the real
world. At last, we build the action template candidates cand
by all the possible delexicalization system responses.

2.2. Dynamic Query Memory Networks

Our model takes a discrete set of RDL dialog utterances
si, i = 1, ..., N − 1 as input, and the output answer sN is the
one of the action templates in cand, where N is the total ut-
terances number in the dialog. Specifically, input s1, ..., sN−2

are the utterances (stories) stored in memory, and sN−1 is the
initial query (question).

2.2.1. Memory Network

We briefly introduce the original end-to-end memory network
structure in [6]. MemNN is made of input memory cells
{mi} and output memory cells {ci}, where i ∈ [1, ..., N −2].
The memories are obtained by transforming input stories us-
ing two embedding matrices A and C that map each token
into word embeddings. Similarly, the query sn−1 is embed-
ded to obtain an internal state u via another embedding matrix
B. Then, each si is encoded into {mi} and {ci} by summing
up the word embedding. The attention weights are computed
to determine the relevance between u and each mi.

pi = Softmax(uTmi), (1)

where Softmax(zi) = ezi/Σje
zj . Then, the model read out

memory o by the weighted sum

o =
∑
i

pici. (2)

The memory layers can be extended and stacked for k hop
operations. In this way, the k + 1 hop takes the output of k
hop as the input query, that is, uk+1 = uk + ok. At last, the
answer prediction is performed by

â = Softmax(W(oK + uK)) (3)

where â is the prediction distribution, W ∈ R|cand|×d is the
final weight matrix, and K is the maximum hop predefined.
Note that â shows the probability distribution over all action
template candidates.

2.2.2. Dynamic Query Components

To capture the sequential dependencies of dialog utterances,
we adopt the idea from [10, 11], whose model can be seen
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as a bank of gated RNNs, whose hidden states correspond to
latent concepts and attributes. Therefore, to obtain a similar
behaviour, DQMemNN adds a recurrent architecture between
hops. We use the output memory cells {ci} as the inputs of
a Long Short Term Memory (LSTM) [12] based on the utter-
ances order appearing in the dialog history. Firstly, the final
hidden state of LSTM is added to the internal state uk.

uk+1 = uk + ok + hkN−2, (4)

where hkN−2 is the last LSTM hidden state at the hop k. In this
way, our model can capture the global attention over memory
cells ok, and also the internal latent representation of dialog
state hkN−2.

Secondly, motivated by [13], we use each hidden state of
the corresponding time step to query the next memory cells
separately. That is, the next hop query vector is not generic
over all the memory cells {mi}. Each cell has its unique
query vector

qk+1
i = uk+1 + hki , (5)

which is then sent to attention weights computation in (1),

pk+1
i = Softmax((qk+1

i )Tmi). (6)

DQMemNN considers the previous hop memory cells as a
sequence of query-changing triggers, which trigger the LSTM
to generate more dynamically informed queries. Therefore,
our model can effectively alleviate temporal problems by the
dynamic query components.

3. RELATED WORK

Generally, there are two approaches in applying machine
learning for task-oriented dialog systems. The first one
mainly implements a pipelined module for language under-
standing, dialog state tracking, action policy, and language
generation [14, 15, 16, 5]. In this approach, the dialog pol-
icy has been implemented through a probabilistic decision
process or feed-forward neural networks trained with super-
vised learning. However, the models depend on the state
features summarized from state tracker at each time step,
which requires designed and explicit labelling.

The second approach is to train model directly on text
transcripts of dialogs in an end-to-end fashion, which learns a
distributed vector representation of the dialog state automat-
ically [4, 8, 9, 13, 17]. RNN model, like LSTM, plays an
important role due to its ability to create a latent represen-
tation, avoiding the need for artificial state labels. In each
of these architectures, the output is produced by generating a
sequence of tokens, or by ranking all possible actions. Sim-
ilarly, End-to-End Memory Networks [6, 7] can be seen as a
variant RNN models. MemNN uses a global memory, with
shared read-write functions and global attention mechanism
over memory representation.

Table 1. Statistics of bAbI dialog dataset. All the reported
number has been taken from the original article [1].

Task 1 2 3 4 5
Avg. User turns 4 6.5 6.4 3.5 12.9

Avg. Sys turns 6 9.5 9.9 3.5 18.4
Avg. KB results 0 0 24 7 23.7
Avg. Sys words 6.3 6.2 7.2 5.7 6.5

Vocabulary 3747
Train dialogs 1000

Val dialogs 1000
Test dialogs 1000 + 1000 OOV

DQMemNN is closely related to memory network but dif-
fers in the memory access. The additional RNN structure
added is able to capture the sequential dependencies. Fur-
thermore, the combination of DQMemNN and RDL makes
our framework for task-oriented dialog system easier to ex-
tend to new domains, and also it also can alleviate the OOV
entity issue.

4. EXPERIMENTS

4.1. Dataset

To evaluate the performance of our model, we use the bAbI
dialog dataset [1]. It has become a standard benchmark since
it evaluates all the desirable features of an end-to-end task-
oriented dialog systems. The dataset is divided into 5 different
tasks, each of which has its own training set. Task 1-4 are is-
suing API call, refining API call, recommending options and
providing additional information, respectively. Task 5 (full
dialogs) is a union of task 1-4 and includes more conversa-
tional turns. There are two test sets for each task, one follows
the same distribution as the training set and the other has OOV
words from a different KB. Dataset statistics are reported in
Table 1, and a toy example of task 1 is shown in Figure 1.

4.2. Model Details

All experiments used a K = 3 hops model with the adjacent
weight sharing scheme, that is, Ck = Ak+1 for k = 1, 2.
We embed cand via the last stage embedding matrix CK ,
and also share parameters between A1 and B to simplify our
setting. For sentence representation, we use position encod-
ing BoW as in [6] to capture words order. Our models were
trained using a learning rate 0.01, with anneals half every 25
epochs until 100 epochs were reached. The weights were
initialized randomly from a Gaussian distribution with zero
mean and σ = 0.1. All training uses a batch size of 16 (but
the cost is not averaged over a batch), and gradients with a l2
norm greater than 40 were clipped. During training, all em-
bedding matrices are jointly learned by minimizing a standard
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Table 2. Per-response accuracy and per-dialog accuracy (in parentheses) on bAbI dialog dataset. Results are compared on plain
text without match type feature in [1]. For those results not reported in the original paper we use hyphen character.

Task QRN* MemNN GMemNN HCN DQMemNN DQMemNN+RDL
T1 99.4 (-) 99.9 (99.6) 100 (100) - 100 (100) 100 (100)
T2 99.5 (-) 100 (100) 100 (100) - 100 (100) 100 (100)
T3 74.8 (-) 74.9 (2.0) 74.9 (3.0) - 74.9 (2.0) 98.7 (90.8)
T4 57.2 (-) 59.5 (3.0) 57.2 (0) - 57.2 (0) 100 (100)
T5 99.6 (-) 96.1 (49.4) 96.3 (52.5) - 99.2 (88.7) 99.9 (98.3)

Test Avg. 86.1 (-) 86.1 (50.8) 85.7 (50.5) - 86.3 (58.1) 99.7 (97.8)
T1-OOV 83.1 (-) 72.3 (0) 82.4 (0) - 82.5 (0) 100 (100)
T2-OOV 78.9 (-) 78.9 (0) 78.9 (0) - 78.9 (0) 100 (100)
T3-OOV 75.2 (-) 74.4 (0) 75.3 (0) - 74.9 (0) 98.7 (90.4)
T4-OOV 56.9 (-) 57.6 (0) 57.0 (0) - 57.0 (0) 100 (100)
T5-OOV 67.8 (-) 65.5 (0) 66.7 (0) 100 (100) 72.0 (0) 99.4(91.6)

Test-OOV Avg. 72.4 (-) 69.7 (0) 72.1 (0) - 71.8 (0) 99.6(96.4)

cross-entropy loss between â and the true label a. Training is
performed using stochastic gradient descent.

4.3. Results

In Table 2 we report the results obtained in the bAbI dia-
log test sets (including the OOV). We compare our proposed
models DQMemNN with and without RDL to original End-
to-End Memory Networks [6], Gated MemNN [7], Query Re-
duction Networks (QRN) [13], and Hybrid Code Networks
(HCN) [8]. In this dataset, HCN represents the state-of-the-
art in Task 5 OOV with a perfect accuracy, but this model
is not fully end-to-end, which includes domain-specific rules
provided by a software developer. Note that the results we
listed in Table 2 for QRN are different from the original pa-
per, since based on their released code 1 we found that the
per-response accuracy was not correctly computed, thus we
simply modified the evaluation part and reported the results.

As we can see, DQMemNN improves the average accu-
racy among the standard tasks compared to other memory net-
work models. Specifically, in full dialog task 5, DQMemNN
outperforms MemNN by 3.1% in the per-response accu-
racy and by 39.3% in the per-dialog accuracy. This result
shows that the dynamic query components in DQMemNN
make memory network learn more complex dialog policy.
Task 5 includes long conversational turns, and it requires
stronger dialog state tracking ability. Similarly, another RNN
method QRN also performs better in task 5, which further
confirmed our hypothesis. However, the difference between
DQMemNN and the others is not that promising in the OOV
test set.

On the other hand, one can observe that DQMemNN with
RDL outperforms all the other models by far. It improves the
average test accuracy by 13.6.%, 13.6% and 14.0% in stan-
dard test set compared to QRN, MemNN and GMemNN, re-

1https://github.com/uwnlp/qrn

spectively; and an improvement of 27.0%, 29.9% and 27.5%
in OOV test set. Note that our framework can achieve almost
perfect per-response accuracy in Task5-OOV, which also con-
firm our initial assumption that using RDL strongly decrease
the learning complexity. This strategy leads to an overall ac-
curacy improvement, which is particularly useful when the
network needs to learn how to work with abstract OOV enti-
ties.

5. CONCLUSION

This paper has introduced an end-to-end framework for task-
oriented dialog systems based on Dynamic Query Mem-
ory Network and a recorded delexicalization mechanism.
DQMemNN is designed to overcome the major drawback of
MemNN, namely no temporal dependencies during memory
access. In addition, RDL is able to reduce the learning com-
plexity and also alleviate OOV entity problems. The results
show that DQMemNN outperforms other memory network
models, especially in the task with longer dialog turns. In
addition, the proposed framework achieves average 99.6 %
per-response accuracy without hand-crafted rules and fea-
tures in OOV test set. In future work, we would like to extend
our model to a more domain-general setting and design a
more efficient way to capture sequential dependencies.
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