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ABSTRACT
This paper presents a new method — adversarial advan-
tage actor-critic (Adversarial A2C), which significantly im-
proves the efficiency of dialogue policy learning in task-
completion dialogue systems. Inspired by generative adver-
sarial networks (GAN), we train a discriminator to differ-
entiate responses/actions generated by dialogue agents from
responses/actions by experts. Then, we incorporate the dis-
criminator as another critic into the advantage actor-critic
(A2C) framework, to encourage the dialogue agent to explore
state-action within the regions where the agent takes actions
similar to those of the experts. Experimental results in a
movie-ticket booking domain show that the proposed Adver-
sarial A2C can accelerate policy exploration efficiently.

Index Terms— task-completion dialogue, reward func-
tion, adversarial learning, policy learning, reinforcement
learning

1. INTRODUCTION

There has been growing interest in exploiting reinforcement
learning (RL) for policy learning in task-oriented dialogue
systems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. One of the biggest
challenges in these approaches is the reward sparsity issue.
Dialogue policy learning for complex tasks, such as movie-
ticket booking and travel planning, requires exploration in a
large state-action space, and it often takes many conversation
turns between the user and the agent to fulfill a task, leading
to a long trajectory. Thus, the reward signals (usually pro-
vided by users at the end of a conversation) are often delayed
and sparse.

To deal with reward sparsity, different approaches have
been proposed recently, with promising empirical results.
One approach is to leverage prior knowledge learned from
expert-generated (or human-human) dialogue. For exam-
ple, instead of learning a dialogue policy from scratch, we
construct an initial policy learned from human-human dia-
logues, via imitation learning or hand-crafted rules. Prior
work showed that a pre-trained supervised policy or a weak
rule-based policy can significantly improve the efficiency

of exploration [4, 11]. Another approach is to introduce
heuristics, often in the form of the intrinsic reward to guide
the exploration [12, 13, 14, 15]. While the extrinsic reward
(e.g., feedback provided by users at the end of a conversation)
could be sparse, it is possible to get intrinsic reward after each
action in order to guide the agent to explore the region more
effectively. For example, VIME maximizes information gain
about the agents belief of environment dynamics [14]. It adds
an intrinsic reward bonus to the reward function, which quan-
tifies the agents surprise to encourage the agent to explore the
regions that are relatively unexplored. BBQN encourages the
agent to explore those state-action regions where the agent
is relatively uncertain in action selection [11]. UNREAL
converts the training signals from three auxiliary tasks as
intrinsic rewards, which significantly improved the learning
speed and the robustness of the agent [15].

In this paper, we present a new method that combines
the strength of the two approaches mentioned above. Sim-
ilar to the first approach, we also leverage expert-generated
dialogues as prior knowledge. However, instead of con-
structing an initial dialogue policy using prior knowledge,
we, inspired by generative adversarial networks (GAN) [16],
train a discriminator to differentiate the responses (or ac-
tions) generated by dialogue agents from those by human
experts. Then, we use the output of the discriminator as
intrinsic reward to encourage the dialogue agent to explore
state-action regions in which the agent takes actions similar
to what human experts do. Specifically, we incorporate the
discriminator as another critic into the advantage actor-critic
(A2C) framework, resulting in a new model, called adversar-
ial advantage actor-critic (Adversarial A2C). The modeling
assumption behind our method is that the expert policies
(embedded in the expert-generated dialogues) are reasonably
good, thus the agent-selected actions, which are more sim-
ilar to expert-selected ones, lead more often to successful
dialogues with positive rewards. In a word, we remedy the
reward sparse problem on two fronts, by leveraging human-
human dialogues as prior knowledge and by introducing
intrinsic rewards. Experiments in a movie-ticket booking
domain show that the proposed Adversarial A2C model can
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Fig. 1. Illustration of a task-completion dialogue system.

significantly improve dialogue policy learning in terms of
both effectiveness and efficiency.

2. METHODOLOGY

Figure 1 illustrates a typical task-completion dialogue system
that contains three main components: language understand-
ing (LU) that converts natural language to system-readable se-
mantic frames, natural language generation (NLG) that con-
verts system actions to natural language, and a dialogue man-
ager (DM). The dialogue manager controls state tracking and
policy learning, where dialogue policy learning can be re-
garded as a sequential decision process. The system will learn
to select the best response action at each step, by maximizing
the long-term objective associated with a reward function.

This paper focuses on dialogue policy learning (the
bottom-right part of Figure 1), where the input of the policy
learner is the dialogue state representation s that consists of
the latest user action (e.g., request moviename(genre=action,
date=today)), the last agent action (e.g. request location),
history dialogue turns, and available database results. The
learned dialogue policy then helps the agent decide what ac-
tion a to take in each turn of the conversation, in order to
maximize the future cumulative reward.

As aforementioned, dialogue policy optimization can be
formulated as a sequential decision problem to maximize the
long term objective associated with a reward function. The
advantage actor-critic (A2C) method has achieved superior
performance on solving sequential decision problems [17, 18,
19]. Su et al. applied the actor-critic model to dialogue pol-
icy optimization and proved its superiority on convergence
to other methods such as deep Q-networks [20]. Similarly,
we employ an actor-critic approach to learn dialogue policy
in our model. In addition, inspired by GAN [16] (using a
discriminator to guide the training of generative models), we
form a minimax game between a generator (an actor that se-
lects actions in our scenario) and a discriminator, to judge
whether an action is performed by the expert or the actor. The
discriminator can be regarded as another critic and servers

as a heuristic intrinsic reward function to guide the actor to-
wards expert-like regions. Another related topic is inverse
reinforcement learning [21], which is to recover the reward
function from expert demonstrations, samples of the trajec-
tories executed by experts [22]. Ho and Ermon also drew a
connection between inverse reinforcement learning and gen-
erative adversarial networks to learn the reward function in
the GAN framework [23]. Compared to their work that fo-
cused on learning the extrinsic reward, in this paper, we use
intrinsic reward to speech up the training.

2.1. Advantage Actor-Critic for Dialogue Policy Learning

The training objective of policy-based approaches is to find
a policy π that maximizes the expected reward R (minimizes
the loss J) over all possible dialogue trajectories. The ex-
pected reward is defined as R =

∑T−1
t=0 γtrt over a dialogue

with the length T , where rt is the reward at time stamp t,
and γ is the discount factor. The policy π is a parametrized
probabilistic mapping function between the state space and
the action space:

πθ(a | s) = P (At = a | St = s; θ), (1)

where θ represents the parameters learned by policy gradient
algorithms [24]. Given the objective function, the gradients
of the parameters are computed as

∇θJ(θ) = E[∇θ log πθ(a | s)Qπθ (s, a)] (2)

where Qπθ (s, a) is the long-term reward value. However, the
gradients usually have high variance, which makes the learn-
ing task more challenging. A baseline function B(s) is usu-
ally employed to reduce the variance, while keeping the esti-
mated gradient unchanged [25]. Here we can simply choose
the state value function as a baseline B(s) = V πθ (s). With
this strategy, we can rewrite (2) using the advantage function
Aπθ (s, a):

∇θJ(θ) = E[∇θ log πθ(a | s)Aπθ (s, a)], (3)
Aπθ (s, a) = Qπθ (s, a)− V πθ (s). (4)

However, in this setting, there are two functions and param-
eters that need to be learned. In order to reduce the number
of required parameters and improve stability, temporal differ-
ence (TD) error is employed as an unbiased estimate of the
advantage function,

δπθ = r + γV πθ (s′)− V πθ (s), (5)

In this way, the policy gradient with the TD error can be com-
puted as

∇θJ(θ) = E[∇θ log πθ(a | s)δπθ ]. (6)

The policy network πθ is termed as the actor to yield a dia-
logue system action, and the advantage function Aπθ is the
critic, indicating “good” or “bad” for executing an action
given a state. The classic A2C architecture is shown at the
bottom part of Figure 2 without discriminator.
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Fig. 2. Illustration of the proposed adversarial advantage
actor-critic for dialogue policy learning.

2.2. Adversarial Model for Dialogue Policy Learning

GAN is a minimax competing game between a generator and
a discriminator. In our scenario, the actor π can be viewed as a
generatorG, which aims to generate actions that can purpose-
fully confuse a discriminator D. The discriminator D is ex-
pected to identify a state-action pair (s, a) as either an expert
demonstration or a simulation experience. When D cannot
distinguish actions generated from the actor π and those from
the experts, we believe that π has been improved from the pre-
vious state. Moreover, D can be viewed as a reward function
extracted from the experts’ trajectories. Figure 2 shows the
discriminator training procedure using adversarial learning.

The training objective is to find a saddle point (π,D) of

Eπ[log(D(s, a))] + EDemo[log(1−D(s, a)]. (7)

More specifically, let θD denote the parameters of the dis-
criminator D. The training objective of D is simply to maxi-
mize the probability of classifying each state-action pair (s, a)
correctly:

min
θD
LD = −E(s,a)∼Simu logD(s, a; θD) (8)

−E(s,a)∼Demo log(1−D(s, a; θD))

where Simu and Demo represent simulation experience and
expert demonstration, respectively. As thus, the actor π can
be improved using actor-critic, with− log(1−D(s, a)) as the
reward function. The updated gradients can then be reformed
as:

∇θJ(θ) = E[∇θ log πθ(a | s)AπθGAN(s, a)]. (9)

Similarly, we use TD error as an unbiased estimation of the
advantage function:

δπθGAN = rGAN + γV πθGAN(s
′)− V πθGAN(s). (10)

Algorithm 1 Adversarial Advantage Actor-Critic Model
1: Input: Expert demonstrations Demo, initialize actor π, dis-

criminator D and two value functions V πθ (s), V πθGAN(s)
2: for i=1:N do
3: Restart the dialogue simulator, get state representation s, ini-

tialize transition tuple buffer = []
4: while s is not a terminal state do
5: Perform the action at according to the actor π(at | s; θ)
6: Receive the reward rt and switch to a new state s′

7: Store (s, at, rt, s
′) to the transition tuple buffer

8: s := s′

9: end while
10: Train the actor π with gradients (6)
11: Train value function V πθ (s) by minimizing the TD error (5)
12: Sample state action pairs (s, a) from expert demonstration

Demo
13: Train the actor π with gradients (9)
14: Update the reward with − log(1 − D(s, a)) and train value

function V πθGAN(s) by minimizing the TD error (10)
15: Update the discriminator parameters (8)
16: end for

2.3. Adversarial Advantage Actor-Critic

Furthermore, training dialogue policy with a stand-alone ad-
versarial model can be impractical, due to the high dimen-
sionality of its state-and-action space. To address this issue,
we propose the adversarial advantage actor-critic (Adversarial
A2C) method as depicted in Figure 2, which combines A2C
with a reward function learned from an adversarial model that
serves as another additional critic for the actor π. There are
several ways to combine two critics, such as linear combina-
tion of two reward functions or alternately optimizing with
each reward function. In our experiments, we use alternat-
ing optimization. Algorithm 1 outlines the full procedure of
training the Adversarial A2C model. The goal is to encourage
the actor to select better actions guided by a discriminator, in
order to improve the efficiency and effectiveness of the explo-
ration.

3. EXPERIMENTS

To verify the performance of the proposed model, we evalu-
ated it in a task-completion dialogue system for movie-ticket
booking. In this system, the agent will gather information
from users through conversations and eventually book the
movie tickets for them. The environment then judges a binary
outcome (success or failure) at the end of each conversa-
tion, based on: 1) whether a movie ticket is booked, and 2)
whether the booked ticket satisfies the constraints requested
by the user.

3.1. Experimental Setup

The dataset used in our experiment is raw conversational data
collected via Amazon Mechanical Turk, annotated by domain
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experts [5]. This single-domain movie-ticket booking dataset
contains 11 dialogue acts and 29 slots, including informable
slots (users can use these to narrow down the search), and
requestable slots (where users can ask the agent for more in-
formation). There are in total 280 labeled dialogues, with an
average length of 11 turns.

In order to perform end-to-end training for the dialogue
system, a user simulator is required to interact with the sys-
tem in a natural way. We adopted a publicly available, user-
agenda-based simulator in our experiments [26]. In a task-
completion dialogue setting, the user simulator first generates
a user goal, and the dialogue agent tries to help the user ac-
complish that goal in the course of the conversation, without
explicitly knowing the user goal. A user goal normally con-
sists of two parts: inform slots representing slot-value pairs
that serve as constraints from the user, and request slots rep-
resenting slots whose value the user has no information about,
but wants to get information from the agent through the con-
versation. In our experiment, the user goals were generated
from labeled conversational data.

3.2. Implementation

In Figure 2, the expert demonstrations can be collected from
either human or pre-trained agent. In our experiment, we col-
lected 50 successful dialogues from a pre-trained agent. The
discriminator is a binary classifier of a single-layer neural net-
work with 80 hidden units. For the actor, we use a single-layer
neural network with a hidden size of 80, pre-trained with rule-
based examples in order to give acceptable initialization. Dur-
ing the Adversarial A2C model training, two critics (the critic
and the discriminator in Figure 2) are applied alternatively,
where their value functions are single-layer neural networks
with 80 hidden units. All parameters are optimized with RM-
SProp. During training, the model is updated at the end of
each dialogue episode.

3.3. Evaluation Results

In the movie-ticket booking task, we benchmark the pro-
posed Adversarial A2C model against three baseline models
on three metrics: success rate, average rewards, and the
average number of turns per dialogue session.
• Rule Agent is a handcrafted rule-based policy that in-

forms and requests a hand-picked subset of necessary
slots.

• A2C Agent is trained with a pre-defined reward function
and a standard advantage actor-critic algorithm.

• BBQN-Map Agent is the best agent among a set of
BBQN variants (including BBQN-VIME) and DQN
variants, which has demonstrated great efficiency for
policy exploration in task-completion dialogue sys-
tems [11].

Fig. 3. Learning curves of dialogue policies.

Agents Success Rate Reward Turn

Rule 41.34 0.26 16.00
A2C 81.24 5.08 15.43
BBQN-Map 81.56 5.00 18.75
Adversarial A2C 87.52 5.93 13.52

Table 1. Final agent performance on 5K simulated dialogues.

Figure 3 shows the learning curves of all these dialogue
agents mentioned above, and Table 1 shows the evaluation
performance of each agent, averaged over 5 runs. The learn-
ing curves in Figure 3 shows that Adversarial A2C agent
can learn much faster with better exploration capability. The
learning curve is also more stable compared with others.
Table 1 suggests that the Adversarial A2C agent can yield
better dialogue policies than other approaches, in terms of
success rate, average reward, and average number of turns
per dialogue.

4. CONCLUSIONS

This paper presents an adversarial advantage actor-critic
model, which can explore policy learning in task-completion
dialogue systems with great efficiency. The proposed model
learns a discriminator from expert demonstrations and online
experience, and then the learned discriminator serves as an
additional critic to guide policy learning. Our experiments in
a movie-ticket booking domain demonstrate the superiority
and efficiency of the proposed model in policy learning, com-
pared with state-of-the-art approaches. The promising results
suggest several interesting future directions: 1) employing
variance-reducing methods to stabilize the gradient calcu-
lation, in order to address the high variance issue in policy
gradient estimation, 2) applying the model to more com-
plicated dialogue tasks, such as composite task-completion
dialogues [8], and 3) extending this work to other deep rein-
forcement learning benchmark tasks and other domains.

6152



5. REFERENCES
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