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ABSTRACT

Trans-dimensional random field language models (TRF LMs) where
sentences are modeled as a collection of random fields, have shown
close performance with LSTM LMs in speech recognition and are
computationally more efficient in inference. However, the train-
ing efficiency of neural TRF LMs is not satisfactory, which limits
the scalability of TRF LMs on large training corpus. In this pa-
per, several techniques on both model formulation and parameter
estimation are proposed to improve the training efficiency and the
performance of neural TRF LMs. First, TRFs are reformulated in
the form of exponential tilting of a reference distribution. Second,
noise-contrastive estimation (NCE) is introduced to jointly estimate
the model parameters and normalization constants. Third, we extend
the neural TRF LMs by marrying the deep convolutional neural net-
work (CNN) and the bidirectional LSTM into the potential function
to extract the deep hierarchical features and bidirectionally sequen-
tial features. Utilizing all the above techniques enables the success-
ful and efficient training of neural TRF LMs on a 40x larger training
set with only 1/3 training time and further reduces the WER with
relative reduction of 4.7% on top of a strong LSTM LM baseline.

Index Terms— Language Model, Random Field, Speech
Recognition, Noise-contrastive Estimation

1. INTRODUCTION

Statistical language models are a crucial component in many appli-
cations, such as automatic speech recognition (ASR) and machine
translation (MT), by encoding the linguistic regularities in terms of
the joint probability of words in a sentence. Currently, the recurrent
neural network approach, which follows the directed graphical mod-
eling approach, has shown significant perplexity reductions over the
classic n-gram LMs in various benchmarks such as the Penn Tree
Bank [1] and the Google One Billion corpus [2], and also achieves
the state-of-the-art word error rates (WERs) in ASR [3].

In contrast, a new trans-dimensional random field (TRF) LM
[4, 5, 6] has been proposed in the undirected graphical modeling
approach, where sentences are modeled as a collection of random
fields and the joint probability is defined in terms of potential func-
tions. With the power of flexibly supporting rich features, neural
TRF LMs [6] with a nonlinear potential function defined by a deep
convolutional neural network (CNN), outperform the n-gram LMs
significantly and perform close to LSTM LMs and are computational
more efficient in inference.

However the training speed of neural TRF LMs is not satisfac-
tory, which is caused by several factors. First, the estimation of TRFs
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depends on the newly developed augmented stochastic approxima-
tion (AugSA) algorithm [5], where the samples generated based on
the Markov chain Monte Carlo (MCMC) theory are used to update
the parameters. The convergence of such approach heavily depends
on the quality and quantity of the samples and usually needs a lot of
training iterations. Second, the trans-dimensional mixture sampling
method (TransMS) which is used to generate samples of varying di-
mensions is computational expensive, even when the joint stochastic
approximation (JSA) [7] strategy is introduced to improve its effi-
ciency. This is partly due to the fact that the sampling operation
depends on the current model parameters, and can not be performed
beforehand or be parallelized with other training operations. Third,
learning the neural TRF LMs need to optimize a non-convex objec-
tive function, which is much harder than learning the discrete TRF
LMs which is a convex optimization. All the above factors limit the
training efficiency of neural TRFs as well as their scalability on large
training corpus.

In this paper, the following contributions are made to improve
both the training efficiency and the performance of neural TRF LMs.
First, TRFs are defined in the form of exponential tilting of a refer-
ence distribution. As a result, only the difference between the data
distribution and the reference distribution needs to be fitted by TRFs,
which is much simpler than fitting the empirical distribution directly.
Second, noise-contrastive estimation (NCE) [8] is introduced to train
TRF LMs by optimizing a discriminator between the real sentences
drawn from the training set and the noise sentences drawn from a
noise distribution. The noise distribution in NCE is independent of
the model distribution and hence drawing noise sentences can be
parallelized with model estimation to accelerate the training process
significantly. Meanwhile, the normalization constants in TRFs can
be treated as the normal parameters and be jointly optimized with
the model parameters during NCE training. Third, we enhance the
neural TRF in [6] by marrying deep CNN and bidirectional LSTM
into the potential function to extract the deep hierarchical features
and bidirectionally sequential features.

Two experiments are designed in the paper, including a pilot
experiment called short-word morphology to validate the NCE in
TRF situation and an ASR experiment on CHiME-4 Challenge data
to evaluate the scalability of neural TRF LMs. First, the pilot ex-
periment reveals the effectiveness of NCE in TRF training where
more than one normalization constant need to be estimated simul-
taneously. Then in ASR, a neural TRF LM with a LSTM LM as
the reference distribution is trained using NCE in 40x larger training
corpus with only a third of training time, compared with the results
reported in [6]. The results show that the neural TRF models and the
directed graphical modeling models are complementary. The lowest
WERs are achieved by combining the neural TRF LMs with n-gram
LMs and LSTM LMs, with relative reduction of 4.7% over state-
of-the-art LSTM LMs, i.e. combining the n-gram LMs and LSTM
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LMs.
The rest of the paper is organized as follows. We first discuss

relate work in Section 2. Then in Section 3, we describe the new
formulation of neural TRFs with the neural network potential. The
NCE training method is introduced in Section 4. After presenting
the experimental results in Section 5, the conclusions are made in
Section 6.

2. RELATED WORK

The noise-contrastive estimation is first proposed in [8] for the es-
timation of unnormalized statistical models, whose normalization
constants can not be obtained in closed form. In language modeling,
NCE is used to train the conditional neural network (NN) LMs, such
as the feedforward neural network LMs [9] and LSTM LMs [10],
by treating the learning as a binary classification problem between
the target words and the noise samples. As the normalization terms
of the prediction probabilities are dependent on the context and can
not be enumerated, an approximate approach is to freeze them to an
empirical value, which is 1 in [10] and e9 in [11]. Moreover, [10]
accelerates the NCE training by sharing the noise samples for each
target word in the mini-batch to reduce the sample times. Then [12]
further omits the sampling process by taking the other target words
in current mini-batch as the noise samples. In this paper, NCE is
evaluated in the estimation of TRF LMs, which are defined on the
trans-dimensional state space. To our best knowledge, this is the
first time that NCE is applied in the trans-dimensional setting.

The idea of defining a model in the form of exponential tilting
of a reference distribution has been studied in natural image gener-
ative modeling [13, 14] where the reference distribution is set to the
Gaussian white noise distribution. Similar formulations have been
used in language modeling with a class n-gram LM as the reference,
including the maximum entropy LMs [15] and the whole-sentence
LMs [16, 17, 18]. In this paper, a LSTM LM is used as the reference
distribution to define a neural TRF LM.

3. NEURAL TRANS-DIMENSIONAL RANDOM FIELD
LMS

Different form the neural TRFs in [6], here the joint probability of a
sequence xl and its length l (l = 1, · · · ,m) is assumed to be in the
form of exponential tilting of a reference distribution q(xl):

p(l, xl; θ) =
πl

Zl(θ)
q(xl)eφ(x

l;θ) (1)

where xl = (x1, · · · , xl) is a word sequence of length l, πl is the
prior length probability, θ indicates the set of parameters, φ is the
potential function, and Zl(θ) is the normalization constant of length
l, i.e. Zl(θ) =

∑
xl q(x

l)eφ(x
l;θ). Different with the TRFs defined

in [5, 6], a reference distribution q(xl) is introduced as the baseline
distribution, and the role of TRFs is to fit the difference between the
data distribution and the reference distribution. If q(xl) is a good
approximation of the data distribution, such as the LSTM LMs used
in our experiments, fitting the difference between the data distribu-
tion and the reference distribution q(xl) shall be much simpler than
fitting the data distribution directly.

To compute the potential function, we define a neural network
by combining the deep CNN structure and the bidirectional LSTM
structure to extract both the deep hierarchical features and bidirec-
tionally sequential features, as shown in Figure 1. The architecture is

Conv1D layers

Word embedding

Covn1D bank + stacking

Conv1D projections

Residual connection

Bidirectional LSTM

Fig. 1. Neural network architecture used to define the potential func-
tion φ(xl; θ)

motivated by the encoder module in [19] with some simplifications
and is described as follows.

In the bottom, a deep CNN is used to extract deep hierarchical
features, whose architecture is similar to the neural network used in
[6] except that the weighted summation in the “CNN-stack” module
is removed. There are three steps. First, each word xi (i = 1, · · · , l)
in a sentence is mapped to an embedding vector. Then, these embed-
ding vectors in a sentence are fed into a “CNN-bank” module, which
contains a set of 1-D convolutional filters with widths ranging from
1 to K. These filters explicitly model local contextual information
(akin to modeling unigrams, bigrams, up to K-grams) [20]. Third,
the output feature maps from multiple filters with varying widths are
spliced together, and fed into a few fixed-width 1-D convolutions
to further extract hierarchical features, which resembles the “CNN-
stack” module in [6]. The output of the last 1-D convolution is added
with the word embedding vectors via a residual connection.

A bidirectional LSTM (BLSTM) is stacked on top of the deep
CNN to extract long-range sequential features from the forward and
backward contexts. Note that all the convolutions mentioned above
are half convolutions 1, i.e. convolutions are performed after padding
zeros to the beginning and the end of the input sequences to preserve
the time resolution.

Finally, the attention mechanism is introduced to summate the
feature vectors of BLSTM at all positions, and the potential function
φ(xl; θ) is computed as follows.

φ(xl; θ) = λT
l∑
i=1

αih[:, i] + c (2)

αi = βTh[:, i], i = 1, · · · , l (3)

where h ∈ R2d×l is the hidden vectors in the BLSTM, d is the

1http://deeplearning.net/software/theano/library/tensor/nnet/conv.html
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number of hidden units of the BLSTM, h[:, i] is the i-th column of
h and λ, β ∈ R2d, c ∈ R are the parameters. In summary, θ denotes
the collection of all the parameters defined in the neural networks.

4. NOISE-CONTRASTIVE ESTIMATION

Noise-contrastive estimation (NCE) is proposed by [8] for the es-
timation of unnormalized statistical models, and has been success-
fully used in the estimation of neural network LMs [9, 10, 11, 12].
The basic idea of NCE is “learning by comparison”, i.e. to per-
form nonlinear logistic regression to discriminate between the data
samples drawn from the training set and the noise samples drawn
from a known noise distribution. The normalization constants can
be treated as the normal parameters and updated together with the
model parameters.

To apply NCE to estimate the neural TRFs defined in (1), first
we rewrite the formulation in (1) by introducing a new parameter ζ:

p(l, xl; θ, ζ) = πlq(x
l)eφ(x

l,;θ)−ζl (4)

where ζ = (ζ1, · · · , ζl) denotes the hypothesized values of the true
logarithmic normalization constants ζ∗l = logZl, which can be es-
timated in NCE. Assuming for each sequence in the training set, ν
noise sequences of varying lengths are generated from a noise dis-
tribution pn(l, xl). Then the probabilities of a sequence (l, xl) be-
longing to the data distribution P (C = 0|l, xl; θ, ζ) and the noise
distribution P (C = 1|l, xl; θ, ζ) are given by

P (C = 0|l, xl; θ, ζ) = p(l, xl; θ, ζ)

p(l, xl; θ, ζ) + νpn(l, xl)
(5)

P (C = 1|l, xl; θ, ζ) = 1− P (C = 0|l, xl; θ, ζ) (6)

Given the training set D, NCE maximizes the following condi-
tional log-likelihood:

J(θ, ζ) =
1

|D|
∑

(l,xl)∈D

logP (C = 0|l, xl; θ, ζ)+

ν
1

|B|
∑

(l,xl)∈B

logP (C = 1|l, xl; θ, ζ)
(7)

where B is the noise sample set, which is generated from the noise
distribution pn(l, xl), |D| and |B| are the number of samples in D
and B respectively, and satisfy ν = |B|/|D|. To maximize the ob-
jective J(θ, ζ), the gradient with respect to θ and ζ can be computed
as follows:

∂J(θ, ζ)

∂θ
=

∑
(l,xl)∈D

wt(l, x
l; θ, ζ)

∂φ(xl; θ)

∂θ
+

∑
(l,xl)∈B

wn(l, x
l; θ, ζ)

∂φ(xl; θ)

∂θ

(8)

∂J(θ, ζ))

∂ζj
= −

∑
(l,xl)∈D

wt(l, x
l; θ, ζ)1(l = j)−

∑
(l,xl)∈B

wn(l, x
l; θ, ζ)1(l = j)

(9)

where 
wt(l, x

l; θ, ζ) =
1− P (C = 0|l, xl; θ, ζ)

|D|

wn(l, x
l; θ, ζ) = −P (C = 0|l, xl; θ, ζ)

|D|

(10)
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Fig. 2. The results of short-word morphology. (a) is the negative
log-likelihood (NLL) on the valid set using the true normalization
constants. (b) is the squared error between the estimated normaliza-
tion constants ζ and the true normalization constants ζ∗. Different
configurations for number of noise samples ν = 1, 10 and noise
distribution pn(xl) = unigram, bigram are investigated.

and 1(l = j) is 1 if l = j and 0 otherwise. The gradient of the
potential function φ(xl; θ) with respect to the parameters θ can be
computed through the back-propagation algorithm. Then any gradi-
ent method can be used to optimize the parameters and normalization
constants, such as stochastic gradient descent (SGD) or Adam [21].

In our experiments, the noise distribution is defined as

pn(l, x
l) = πlpn(x

l), (11)

where πl, l = 1, ...,m is the prior length probability and pn(xl) is
a n-gram LM. This makes the noise distribution pn(l, xl) close to
the data distribution, and we can achieve a good performance with a
medium sample number ν, such as 20 in our following experiments,
as suggested in [8].

5. EXPERIMENTS

In this section, two experiments are conducted to evaluate NCE
training for neural TRFs. First, a pilot experiment - short-word
morphology is designed to exactly evaluate the performance of
NCE. Then neural TRFs and NCE training are applied to language
modeling in ASR using CHiME-4 Challenge data [22].

5.1. Short-word morphology

In this section, we design a simulation experiment to validate the
NCE training for neural TRF models, where more than one normal-
ization constants need to be estimated simultaneously. The training
set and valid set include 5,143 and 69 different English words with
at most 3 characters respectively, which are extracted from English
Gigaword dataset [23]. Every word is decomposed to a character
sequence and the objective of this experiment is to assign a proba-
bility to the character sequences. The vocabulary contains a total of
28 symbols, i.e. the 26 English letters and two auxiliary symbols -
the beginning symbol and the end symbol, which are added to the
beginning and the end of every character sequence respectively. As
the length of each sequences is no more than 3, the normalization
constants Zl, l = 1, 2, 3 can be calculated exactly.

A neural TRF defined in section 3 is applied to model these
character sequences, with q(xl) being uniform. For the potential
function, each character is embedded to a 16 dimensional vector and
directly fed into the BLSTM without passing the CNN layers. The
BLSTM contains one hidden layer for each direction and 16 hid-
den units for each layer. The prior length distribution πl in model
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πl empirical length probabilities

q(xl)
a LSTM with 512 embedding size, 2 hidden layers and
512 hidden units per layer [1]

φ(xl; θ)

embedding size 200

Conv1D bank cnn-k-128-ReLU,
with k ranging from 1 to 10

Conv1D layers
cnn-3-128-ReLU→
cnn-3-128-ReLU→
cnn-3-128-ReLU

BLSTM 1 layer and 128 hidden units

Table 1. The configuration of neural TRFs. “cnn-k-n-ReLU” de-
notes a 1-D CNN with filter width k, output dimension n and recti-
fied linear unit (ReLU) activation. “A→ B” denotes that the output
of layer A is fed into layer B.

distribution (4) and the noise distribution (11) are both set to the em-
pirical length distribution. The parameters θ are initialized randomly
within an interval from -0.1 to 0.1, and the initial value of normal-
ization constants are ζl = l × log V where V = 28 denotes the
vocabulary size. We use Adam to update the parameter θ and the
normalization constants ζ with the mini-batch size being 10. The
learning rates for θ and ζ are fixed to 0.001 and 0.01 respectively.
We investigate different configurations for sample number ν and the
noise distribution pn(xl). The results are summarized in Figure 2.
The main conclusions are as follows.

First, NCE performs well in TRF training, with both the
NLL and normalization constants converging after several train-
ing epochs. Second, increasing the sample number ν form 1 to 10
can lead to a lower NLL (Figure 2(a)) and make the normalization
constants ζ converge fast to the true ζ∗ (Figure 2(b)). Third, for
a small sample number ν = 1, changing the noise distribution
pn(x

l) from unigram (red solid line) to bigram (red dot line) will
improve the convergence of NCE. If we increase the sample number
to ν = 10, the choice of the noise distribution makes less differ-
ences. The above observations of NEC in TRF training is consistent
with [8]

5.2. Neural TRF LMs in speech recognition

In this section, we evaluate the performance and scalability of neu-
ral TRF LMs trained by NCE over CHiME-4 Challenge data. The
training corpus for language modeling contains about 37 millions to-
kens, which is about 40 times of the Penn Treebank (PTB) training
set used in [6]. The vocabulary is limited to 5 K words, including a
special token 〈UNK〉 denoting the out-of-vocabulary words.

For evaluation in terms of speech recognition WERs, various
LMs are applied to rescore the 100-best lists from recognizing
CHiME-4 development and test data. For each utterance, the 100-
best list of candidate sentences are generated by the multi-channel
ASR system developed by our team under CHiME-4 Challenge
rule, which is detailed in [24]. All the hyper-parameters of training
LMs, such as learning rates and training epochs, are tuned on the
development utterances to achieve the lowest WER. In CHiME-4
Challenge, different systems are compared in terms of the WERs on
the real test set, which consists of speech recordings collected in real
environments.

The configuration of the neural TRF LMs used in this experi-
ments are listed in Table 1. First a LSTM LM [1] with 2 hidden
layers and 512 hidden units per layer is trained on the training set
using SGD method, and serves as the reference distribution q(xl) of
neural TRF LMs in (1). Then NCE with ν = 20 is used to train the

model Dev Test
real simu real simu

KN5 5.03 4.79 7.38 5.78
LSTM2x512 3.63 3.24 5.70 4.53
neural TRF 3.53 3.20 5.68 4.36
KN5+LSTM2x512 3.56 3.29 5.71 4.18
KN5+neural TRF 3.53 3.22 5.54 4.20
KN5+LSTM2x512+neural TRF 3.42 3.10 5.44 4.13

Table 2. Speech recognition WERs on CHiME-4 Challenge data.
“Dev” denotes the development set and “Test” denotes the test set.
“real” denotes the speech recorded in real environments and “simu”
denotes the simulated speech. “+” deontes the log-linear interpola-
tion with equal weights.

neural TRF LM by fixing the parameters of the reference distribu-
tion q(xl), and updating the model parameters θ and normalization
constants ζ simultaneously based SGD method. The learning rates
for both θ and ζ are same which are initialized to 0.01 and reduce by
half per epoch. The parameters θ are initialized randomly within an
interval from -0.1 to 0.1, and the normalization constants are initial-
ized to ζl = l for l = 1, · · · ,m. We perform the training process
for 2 epoches before the neural TRF achieves the lowest WER in the
development set. The total training time is 1 day, which is one third
of the training time reported in [6].

The WERs of various LMs are shown in Table 2, including
a 5-gram LM with modified Kneser-Ney smoothing [25] (de-
noted by “KN5”), and the reference LSTM LMs q(xl) (denoted
by “LSTM2x512” to emphasize the hidden layers and hidden units).
First, the LSTM LM achieves significant WER reduction compared
with “KN5” with relative WER reduction 22.8% on real test set.
Combining the LSTM LM and the n-gram LM leads to the state-of-
the-art results, denoted by “KN5+LSTM2x512”. Building on top of
the LSTM LM, our neural TRF LM can further reduce the WER with
only 2-epoch NCE training. Remarkably, the lowest WER 5.44%
on real test set is achieved by combining neural TRF LMs with n-
gram LMs and LSTM LMs (denoted by “KN5+LSTM2x512+neural
TRF”), with relative reduction of 4.7% compared to the strong
state-of-the-art system “KN5+LSTM2x512”. This reveals that neu-
ral TRF LMs and various LMs in the directed graphical modeling
approach are complementary, and a combination of them leads to
WER reduction.

6. CONCLUSION

This paper presents our continuous effort to develop the TRF ap-
proach to language modeling. We make the following contribu-
tions to improve the convergence and scalability of neural TRF LMs.
First, a reference distribution is introduced to serve as a baseline dis-
tribution. Then NCE is used to estimate the parameters and nor-
malization constants jointly. Finally, new neural network structures
are investigated in neural TRF LMs, by combing the CNN and bidi-
rectional LSTM into the potential function. Utilizing all these tech-
niques leads to the superior performance of TRF LMs in the CHiME-
4 Challenge dataset, which is a supporting evidence of the power of
TRF LMs on a medium size training set.

It is worthwhile to further investigate techniques to improve the
training efficiency of TRF LMs. Moreover, integrating richer non-
linear and structured features is an important future direction. The
neural TRF models can also be applied to other sequential and trans-
dimensional data modeling tasks in general.
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