
ENTROPY BASED PRUNING OF BACKOFF MAXENT LANGUAGE MODELS WITH
CONTEXTUAL FEATURES

Tongzhou Chen?∗ Diamantino Caseiro† Pat Rondon†

? Georgia Institute of Technology, Atlanta, Georgia, USA
† Google, Inc. New York, New York, USA

ABSTRACT

In this paper, we present a pruning technique for maximum en-
tropy (MaxEnt) language models. It is based on computing the exact
entropy loss when removing each feature from the model, and it ex-
plicitly supports backoff features by replacing each removed feature
with its backoff. The algorithm computes the loss on the training
data, so it is not restricted to models with n-gram like features, al-
lowing models with any feature, including long range skips, triggers,
and contextual features such as device location.

Results on the 1-billion word corpus show large perplexity im-
provements relative for frequency pruned models of comparable
size. Automatic speech recognition (ASR) experiments show word
error rate improvements in a large-scale cloud based mobile ASR
system for Italian.

Index Terms— entropy based pruning, language modeling,
maximum entropy modeling, contextual features, geo-domain fea-
tures

1. INTRODUCTION

Despite the recent popularity of neural network-based language
models (NNLM), sparse language modeling techniques are still the
state of the art for very large second pass language models used in
tasks such as speech recognition for mobile ASR. A likely reason
for the better quality of sparse models is that NNLM model training
does not yet scale to the amount of data available (often as high as
1 trillion tokens), and the data consist of short queries where the
long context modeling capacity of long short term memory language
models (LSTMLM) is of little use.

A drawback of sparse modeling techniques, such as conven-
tional n-grams, MaxEnt, or sparse non-negative matrix language
models (SNM) [1], is that the number of possible features grows
very fast when we increase the modeling context history (how far
back the model looks for features).

The most popular solution to this problem is to select only fea-
tures that occur with some minimum frequency. With conventional
n-gram models, this technique is often complemented by training a
larger model and then pruning it to the required size [2, 3].

Although there has some been research in pruning techniques
for more complex models, such as MaxEnt [4], or SNM [5, 6], most
techniques assume that features are either n-grams or extracted from
short histories. In this paper we propose a relative entropy pruning
technique that allows for arbitrary features.

In [7], backoff features were proposed for MaxEnt models.
These features trigger when a regular feature (for example, a high
order n-gram) is missing from the model, and they greatly improve

∗This author performed the work while at Google, Inc.

the quality of pruned models. Our proposed technique is designed
to work with backoff-MaxEnt models.

In the next section we describe related work. In Sections 3 and
4 we introduce our notation and describe the pruning algorithm. In
Section 5, we compare our algorithm to frequency pruning in terms
of perplexity (PPL) and word error rate (WER) on various models.
We conclude in Section 6.

2. PREVIOUS WORK

Pruning is an effective and common feature selection technique in
sparse language modeling. In particular, it is often used in classical
n-gram models because the total number of possible features grows
exponentially with the n-gram order, and even when restricted to
features seen in the training data, for large orders, the number of
features per order is of the same magnitude as the number of tokens
in the training data.

The simplest form of pruning is to select only features that ap-
pear a minimum number of times in the training data. This is very ef-
fective, yet more sophisticated techniques have been proposed. Sey-
more and Rosenfeld [2] showed that pruning the n-gram model ac-
cording to the estimated conditional probability and frequency of
features is superior to the traditional frequency counts. Later, Stol-
cke [3] proposed a criterion based on the relative entropy difference
after removing a feature from the original n-gram model with back-
offs. Seymore and Rosenfeld’s technique can be seen as an approx-
imation to Stolcke’s entropy pruning technique. Oguz et al. [6] ex-
tended entropy pruning to n-gram SNM models with contextual fea-
tures. Besides frequency and entropy, other criteria such as mutual
information [5], probability and rank [8] have also been proposed.

Compared to conventional n-gram language models, there has
been comparably less work on pruning maximum entropy models.
The most exhaustive work is Chen at al. [4], where the authors pro-
pose and compare a diversity of pruning techniques, including vari-
ous approximations to relative entropy pruning. Our method differs
in various respects: we compute the exact entropy loss for each fea-
ture in the training data instead of approximating it; we support more
feature types than word or class n-grams; and our method supports
backoff features.

3. BACKGROUND

A maximum entropy language model with backoff-inspired features
consists of the following parts:

• A set X of word contexts such as previous history or contex-
tual information.

• A set Y denotes the vocabulary.

6129978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

• A set of functions f t : X×Y 7→ Rd mapping any (x, y) pair
to a sparse 0 − 1 feature vector in Rd. f t(x, y) = 1 if some
property of x with y is true; and 0 otherwise. Each function
corresponds to a particular feature template t, for example:
2-gram, skip-5, etc.

• A parameter vector v in Rd.

• Optionally, a set of functions bot : X × Y 7→ R assigning
backoff weights.

For any x ∈ X and y ∈ Y , a MaxEnt model gives the posterior
as:

p(y|x; v) =
N(y|x; v)

Z(x; v)
.

The numerator N(y|x; v) is the exponential of the dot product be-
tween a parameter vector v and the sparse feature vectors f t(x, y),
summed with backoffs bot(x, y) if backoff features are enabled.

N(y|x; v) = exp(
∑
t

v · f t(x, y) + bot(x, y))

The denominator Z(x; v) gives a normalization constant.

Z(x; v) =
∑
y′∈Y

N(y|x; v).

The backoff functions bot(x, y) are non-zero only when a cor-
responding feature f t(x, y) does not exist. In this work, the value of
the backoff is shared across contexts x, and only dependent on the
feature template t and the predicted word y.

4. ENTROPY-BASED MODEL PRUNING

The natural criterion of entropy-based pruning is to minimize the
relative entropy between the original and pruned models. As rel-
ative entropy is inversely proportional to the difference of the log-
likelihoods of the pruned model and the original model, we would
like to maximize the difference of the log-likehoods between the
pruned and original models.

4.1. Loss function

We define the loss L−ft
i (x,ỹ)

as the log-likelihood difference of
model without feature f t

i (x, ỹ) 1 and the original model, in the
training data D ⊂ X × Y :

L−ft
i (x,ỹ)

=
∑

(x,y)∈D

logP−ft
i (x,ỹ)

(y|x; v)− logP (y|x; v).

For a fixed y, after pruning the feature f t
i , the posterior becomes

p−ft
i (x,ỹ)

(y|x; v) =
N−ft

i (x,ỹ)
(y|x; v)

Z−ft
i (x,ỹ)

(x; v)
,

where

N−ft
i (x,ỹ)

(y|x; v)

=

{
exp(logN(y|x; v)− vi + bot(x, ỹ)) if y = ỹ;

N(y|x; v) otherwise,

1And without its corresponding weight vi.

and

Z−ft
i (x,ỹ)

(x; v)

=Z(x; v)−N(ỹ|x; v) + N−ft
i (x,ỹ)

(ỹ|x; v).

The term bot(x, ỹ) is zero when backoff features are not used.

4.2. Efficiently computing the loss

We compute the loss for all features by iterating once though the
training data D: For every example (x, y) we emit the partial loss for
every feature used in computing P (y|x). As shown in section 4.1,
each partial loss is computed in constant time by reusing N(x, y)
and Z(x). These partial losses are then accumulated in the final
loss for each feature. This algorithm can be easily distributed using
MapReduce [9].

5. EXPERIMENTS

We performed our experiments as follows. For a trained MaxEnt
model, we first estimated the entropy loss per feature. Then we
pruned the features with loss no less than threshold. Finally, we re-
trained the pruned model with weights starting from 0 and evaluated
the PPL and WER on the pruned, retrained model.

5.1. Experiments on the one-billion-word corpus

We run our perplexity experiments on the one-billion-word cor-
pus [10]. All our MaxEnt models are hierarchical, i.e., P (w|h) =
P (c(w)|h)P (w|x, h), and use 1000 clusters. We compare our
pruned models to a counts-cutoff baseline, where we prune based on
feature frequency. Unigram features, and backoff features, are never
pruned.

In the first experiments we used n-gram features only (up to 5-
gram), to simplify the analysis. Starting with a model with no prun-
ing, we used various thresholds to obtain models of various sizes
and perplexity. The loss for entropy pruning was computed on the
training data. Figure 1 shows the results. We observe that entropy
pruning is significantly worse than frequency pruning. According
to the trendlines, entropy pruning perplexity is about 5 points worse
across a wide range of model sizes.

Fig. 1. Model size vs. perplexity of entropy and frequency pruned
5-gram models.

6130

Table 1. Percentage of features kept when pruning with threshold -1
using entropy-based pruning alone.

2-gram 3-gram 4-gram 5-gram
% kept 9.09% 7.64% 19.67% 39.75%

Table 2. Percentage of features kept when pruning at various thresh-
olds after removing features with fewer than 3 occurrences.

Threshold 2-gram 3-gram 4-gram 5-gram
0 93.71% 94.53% 94.63% 95.35%
-0.3 69.89% 63.05% 59.94% 58.91%
-0.8 55.03% 47.29% 44.82% 45.77%
-1.3 46.93% 38.49% 35.76% 37.70%
-1.9 40.77% 31.71% 28.46% 30.94%

Looking at the number of features selected by template in table 1
we notice that entropy pruning is selecting mostly singleton features,
thus overfitting to the training data.

To overcome this problem, we decide to filter out features with
low frequencies before applying entropy pruning. Figure 2 compares
entropy and frequency pruning on a model with features occurring
at least 3 times in the training data.

We see that now entropy pruning achieves much better perplex-
ity for a given model size. Note also that backoff features greatly
improve perplexity with minimal increase in model size, and the
proposed entropy pruning method is also effective for models in-
corporating backoff features.

When we break down the pruning results by n-gram order, as in
table 2, we see that the pruning algorithm is less aggressive when
pruning more general features such as 2-grams and 3-grams than
when pruning features with longer, more-specific contexts.

Fig. 2. Model size vs. perplexity of entropy and frequency pruned
5-gram models.

5.1.1. Is retraining necessary?

In the previous experiments, after pruning, we set the weight of re-
maining features to 0 and retrain the model. To verify if retraining is
really necessary, after pruning, we kept the original feature weights
and did not retrain the model. Figure 3 compares perplexity with and
without retraining and shows that retraining after pruning is indeed
important, improving perplexity by 6% to 10%.

Fig. 3. Perplexity of re-trained vs not re-trained models.

5.1.2. Beyond n-grams

To verify if the proposed entropy pruning model is also effec-
tive in models with a larger variety of features types, we trained
a MaxEnt model with the following feature templates: word n-
grams, y, xi−1, · · · , xi−k up to 5-gram; word cluster n-grams,
y, c(xi−1), · · · , c(xi−k) from 3 to 5-gram; skip 2-grams, y, ∗, xi−k

up to 5 word gap; left and right skip 3-grams, y, ∗, xi−k+1, xi−k,
and y, xi−1, ∗, xi−k up to 3 word gap. To avoid overfitting, we only
included features with frequency 2 or above.

Figure 4 shows the size and perplexity of various models. We
observe that the algorithm is effective for models with diverse fea-
ture types. (Note that perplexity plateaus around 800M features; the
difference in perplexity of models beyond this size is a fraction of a
point and can be attributed to noise in the distributed training.)

Fig. 4. Model Size vs Perplexity of entropy and frequency pruned
models.

5.2. Geographic adaptation experiments

One distinguishing feature of our MaxEnt models is the ability to
adapt models to the speaker’s context — for example, to their geo-
graphic location [11]. An adapted model comprises a base language
model, which is unchanged by the adaptation, and a smaller context-
specific model adaptation which is trained against context-specific
data and applied during prediction only when the user is in the ap-
propriate context. By pruning our model adaptations, we can focus

6131

Table 3. In-domain perplexity before and after pruning.
Pruning Method PPL Before PPL After
Locale-Agnostic 74.68 74.62
Locale-Specific

New York 100.33 96.87
Los Angeles 69.21 80.29
Chicago 75.69 74.52

Table 4. Unigrams with the five largest losses in each region.
New York Los Angeles Chicago
kcbs los what
brooklyn what how
staten how what’s
bronx burbank chicago
manhattan northridge cubs

our limited feature budget on contextual features that have the most
impact relative to the non-context-adapted model.

In the following experiments, we trained a model for US En-
glish with geographic adaptations for the top 30 US cities by traffic,
all 50 US states, and top 14 English-speaking countries by traffic;
see [11] for model and data details. We then used our entropy-based
pruning method to prune the geographic adaptation model, with loss
measured against the context’s training set. Finally, we retrained the
adaptation. We performed two variants of the pruning experiment:
an overall pruning which just keeps unigrams and bigrams in the
geo-adapted model whose loss is in the 95th percentile (counted sep-
arately for unigrams and bigrams), and city-specific prunings which
keep the features within each city whose losses are in the 95th per-
centile of the features in that city. We used the largest three US cities
for our experiment. For each experiment, we report the difference in
perplexity between the unpruned and pruned model (table 3). Table 4
lists the top five unigrams by loss in each city. In each case, there are
unigrams with clear city-specific importance (e.g., the boroughs of
New York City), though there are also some terms with large losses
which are not city specific. These non-city-specific terms likely have
large losses because of distributional differences between our adap-
tation data, which is heavily skewed toward voice queries, and our
baseline training data, which uses a larger variety of text sources.

5.3. ASR experiments

We conducted automatic speech recognition (ASR) experiments to
gauge the impact of model pruning on automatic speech recognition
quality. All experiments were based on Google’s cloud based mo-
bile ASR system for Italian.2 This is a state of the art system with an
LSTM acoustic model [12] and a 15 million n-gram LM for the first
pass, estimated from various data sources using Bayesian interpola-
tion [13]. In the second pass, a very large MaxEnt language model
is used to rescore n-best lists generated by the first pass system.

The corpus used to train the second pass models consists of 35
billion words of mobile written sentences and a small subset of 15
million transcribed words. All data were anonymized and stripped
of personally-identifying items. The vocabulary contains 3.9 million
words. We rank the vocabulary according to frequency in automat-
ically recognized ASR logs. The most frequent million words are

2We switch from English to Italian because we are benchmarking a full
ASR system with our technique integrated, rather than just evaluating an LM
trained on the 1 billion-word corpus, for which we do not have audio.

clustered in 1000 clusters. The remaining words are assigned to a
special cluster, <TAIL>. For efficiency, we estimate its cluster con-
ditional sub-model P (w|Φ(W), c(w) = <TAIL>) is estimated via
unigram relative frequencies instead of MaxEnt.

For training, we use stochastic gradient descent and the dis-
tributed IMI algorithm [14, 15]. Our training procedure consists of
training on the training data for 5 IMI epochs using 500 worker ma-
chines, followed by 3 epochs of adaptation on the transcribed data
subset [11]. This adaptation procedure only modifies features in con-
texts seen in the adaptation data.

We prune the initial 2 billion parameter MaxEnt 2nd pass lan-
guage model to sizes varying from 25 million to 1 billion param-
eters. Pruning is performed before the adaptation epochs; we ob-
served that, if we prune the final adapted model, the pruning algo-
rithm discards the adapted features, leading to large quality losses.
Figures 5 and 6 show the word error rate and size of models pruned
using frequency and entropy pruning. We see that in the voice search
test set WER is basically the same as using frequency pruning, but
in the dictation test set entropy pruned models achieve up to 0.1%
WER improvements.

Fig. 5. Model size vs. WER of pruned models on Voice Search task.

Fig. 6. Model size vs. WER of pruned models on Dictation task.

6. CONCLUSIONS AND FUTURE WORK

We showed that the proposed pruning algorithm for MaxEnt mod-
els leads to significantly better models, in terms of perplexity and
WER, than frequency pruning. Because we compute the losses on
a training dataset we are able to prune models with features such as
skips. However, the algorithm is susceptible to overfiting. As future
work, we plan to investigate using explicit regularization techniques
to address the problem. The proposed algorithm showed promising
perplexity results as a feature selector for geo contextual features.
Our next steps will be researching the impact on ASR quality.

6132

7. REFERENCES

[1] Noam M. Shazeer, Joris Pelemans, and Ciprian Chelba,
“Sparse non-negative matrix language modeling for skip-
grams,” in Proceedings of Interspeech, 2015, pp. 1428–1432.

[2] Kristie Seymore and Ronald Rosenfeld, “Scalable backoff lan-
guage models,” in Spoken Language, 1996. ICSLP 96. Pro-
ceedings., Fourth International Conference on. IEEE, 1996,
vol. 1, pp. 232–235.

[3] Andreas Stolcke, “Entropy-based pruning of backoff language
models,” in DARPA Broadcast News Transcription and Under-
standing Workshop, 1998.

[4] Stanley F. Chen, Abhinav Sethy, and Bhuvana Ramabhad-
ran, “Pruning exponential language models,” in 2011 IEEE
Workshop on Automatic Speech Recognition & Understand-
ing, ASRU 2011, Waikoloa, HI, USA, December 11-15, 2011,
David Nahamoo and Michael Picheny, Eds. 2011, pp. 237–
242, IEEE.

[5] Joris Pelemans, Noam M. Shazeer, and Ciprian Chelba, “Prun-
ing sparse non-negative matrix n-gram language models,” in
Proceedings of Interspeech, 2015, pp. 1433–1437.

[6] Barlas Oguz, Issac Alphonso, and Shuangyu Chang, “Entropy
based pruning for non-negative matrix based language models
with contextual features,” in Proceedings of Interspeech, 2016,
pp. 2328–2332.

[7] Fadi Biadsy, Keith Hall, Pedro J Moreno, and Brian Roark,
“Backoff inspired features for maximum entropy language
models,” in Fifteenth Annual Conference of the International
Speech Communication Association, 2014.

[8] Jianfeng Gao and Min Zhang, “Improving language model
size reduction using better pruning criteria,” in Proceedings
of the 40th Annual Meeting on Association for Computational
Linguistics, Stroudsburg, PA, USA, 2002, ACL ’02, pp. 176–
182, Association for Computational Linguistics.

[9] Jeffrey Dean and Sanjay Ghemawat, “Mapreduce: Simplified
data processing on large clusters,” Commun. ACM, vol. 51, no.
1, pp. 107–113, Jan. 2008.

[10] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, and Phillipp Koehn, “One billion word
benchmark for measuring progress in statistical language mod-
eling,” CoRR, vol. abs/1312.3005, 2013.

[11] Fadi Biadsy, Mohammadreza Ghodsi, and Diamantino Ca-
seiro, “Effectively building tera scale maxent language mod-
els incorporating non-linguistic signals,” in INTERSPEECH,
2017.

[12] Hasim Sak, Andrew W. Senior, Kanishka Rao, and Françoise
Beaufays, “Fast and accurate recurrent neural network acoustic
models for speech recognition,” CoRR, vol. abs/1507.06947,
2015.

[13] Cyril Allauzen and Michael Riley, “Bayesian language model
interpolation for mobile speech input,” in INTERSPEECH
2011, 12th Annual Conference of the International Speech
Communication Association, Florence, Italy, August 27-31,
2011, 2011, pp. 1429–1432.

[14] Keith Hall, Scott Gilpin, and Gideon Mann, “Mapre-
duce/bigtable for distributed optimization,” in Neural Infor-
mation Processing Systems Workshop on Leaning on Cores,
Clusters, and Clouds, 2010.

[15] Ryan McDonald, Keith Hall, and Gideon Mann, “Distributed
training strategies for the structured perceptron,” in Human
Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational
Linguistics, 2010, pp. 456–464.

6133

