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ABSTRACT

In this paper, we propose improving automatic speech recognition
(ASR) accuracy for local points of interest (POI) by leveraging a
geo-specific language model (Geo-LM). Geographic regions are
defined according to U.S. Census Bureau Combined Statistical Ar-
eas. Depending on the user’s associated geographic region, for each
user a class based Geo-LM is constructed dynamically within a
difference-LM based weighted finite state transducer (WFST) sys-
tem. The benefits of this approach include: improved accuracy for
local POI name recognition, flexibility in training, and efficient LM
construction at runtime. Our experiments show that the proposed
Geo-LM achieves an average of over 18% relative word error rate
(WER) reduction on the tasks of local POI search, with no degra-
dation to the general accuracy and very limited latency increase,
compared to the baseline nationwide general LM. In addition to
accuracy improvement, we also discuss optimization of runtime
efficiency.

Index Terms— speech recognition, language model, Geo-LM,
class LM, Combine Statistical Area

1. INTRODUCTION

In recent years, speech recognition accuracy has experienced phe-
nomenal improvements due to the wide adoption of deep learning
techniques. There are already claims of ASR achieving human par-
ity in conversational speech recognition [1]. On the other hand,
although many state-of-the-art ASR systems perform very well on
general recognition tasks, recognition of named entities is still poor
due to various challenges. For example, named entities are often so
diverse that it is difficult for the regular lexicon to cover all of them.
Furthermore, named entities can be unique and rarely seen in train-
ing data. As a result, named entities often have low LM probabilities,
which makes them hard to recognize.

We believe the next frontier for ASR is the effective utilization of
personalized and localized information. In this paper, we are specifi-
cally tackling the problem of improving local POI name recognition
in mobile devices by utilizing Geo location information. Nowadays
speech has become a popular user interface for mobile devices, and
Geo location information is readily available. Since mobile users
are more likely to search nearby local POIs, by incorporating users’
Geo location information into ASR system, the accuracy of local
POIs name recognition can be significantly improved.

Using Geo location information has been investigated over the
years [2, 3, 4, 5, 6, 7, 8]. Generally there are two ways of defining
users’ Geo locations for ASR system: One way is to extract Geo in-
formation from users’ speech that contains a location. For example,
when a user says “direction to Helmand Restaurant near Boston,”
Boston becomes a strong cue to indicate the Geo location of the user.
However, this often requires two-pass decoding as described in [2].

Another way is to obtain Geo coordinates directly from mobile de-
vices. As nowadays latitude/longitude coordinates are commonly
accessible in mobile devices, it becomes feasible to design location
aware ASR system accordingly [4]. In this paper, we utilize Geo
coordinates extracted directly from mobile devices for our location
aware ASR system design.

One of the problems with using Geo location information is
defining the Geo region granularities. Different Geo region gran-
ularities such as city, state, zip code, and designated marketing areas
(DMA) have been proposed for location aware ASR systems design
[3, 5]. In this paper, we propose using combined statistical areas
(CSAs) as defined by the U.S. Census Bureau [9]. It is believed
CSAs are better in representing the economic and social links within
regions, thus more relevant to our applications on mobile devices.

To improve local POI name recognition by leveraging Geo lo-
cation information, language models can be updated with location
specific information. Our proposed Geo-LMs are compact statistical
LMs represented as WFSTs, which are dynamically and efficiently
spliced into our main language model via on-the-fly replacement
during Viterbi search. Essentially our Geo-LMs framework is a type
of class LM, which provides an efficient solution for supporting the
traditional class LM [10] in a difference-LM based WFST system.

2. GEOGRAPHIC REGIONS

In our proposed system, one Geo-LM is constructed for each defined
Geo region. For users within a certain region, the system will load
the associated Geo-LM for ASR decoding. Therefore it is important
that every defined Geo region has good coverage of local POIs that
users search for within the region.

2.1. Analysis of User-POI Distance

To determine the granularity of Geo regions, we analyzed the dis-
tances between users and their searched POIs. The latitude/longitude
coordinates of the users and their searched POIs are obtained from
Siri logs. In order to preserve the privacy of Siri users, the precision
of users’ latitude/longitude is reduced by randomizing it within the
local population. Since each of our targeted regions covers a big di-
ameter, the fuzziness of the data is not an issue. In total we analyzed
4,612,624 users’ queries in the United States, and Fig. 1 shows the
statistics of the distances between user location and searched POI
location. As one can see, nearly 70% of the distances are less than
50 miles, which means the majority of the users are close to the
POIs they want to search. The distribution also has a long tail, with
about 10% of the queries having larger than 1000 miles of distance
between the user and the searched POI. By looking into the long
distance queries, we find that many of them are referring to com-
mon POIs that may not even be in the U.S.; e.g., Abadan Interna-
tional Airport, which the ASR system with general LM probably
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has already performed well on. On the other hand, the short distance
queries often refer to local business names which can be quite unique
and have low n-gram probabilities in general LM.
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Fig. 1. The normalized frequency and cumulative distribution func-
tion (CDF) of the user-POI distances.

2.2. Geographic Regions Definition and Search

Based on the observations in section 2.1, we propose to define Geo
regions based on Combined Statistical Areas, which consist of ad-
jacent metropolitan areas that show economic and social links mea-
sured by commuting patterns. In total there are 169 CSAs covering
80% of the population in the United States. For each CSA a dedi-
cated Geo-LM will be built. For other areas not covered by CSAs, a
single “global” Geo-LM will be built. The details of how those Geo-
LMs are built will be described in section 3. To efficiently search
the CSA for a user, we store a latitude/longitude lookup table from
rasterized Cartographic Boundary Shapefiles provided by U.S. Cen-
sus Bureau [11]. At runtime, given a user’s Geo location, the system
can find the associated CSA in the lookup table with constant time
complexity, as described in the next section.

2.3. Geographic Regions Data Format

Since all the location lookup and Geo-LM swapping must be done
at runtime, processing efficiency and memory usage must be greatly
optimized. This section describes the process.

A cylindrically projected world map of regions is stored in a
Portable Grey Map (PGM) [12] file. A grey value of each pixel en-
codes the identity of the associated CSA. The PGM file is accompa-
nied by a JSON metadata file, which defines framing of the bitmap
into latitude/longitude coordinates and the mapping array between
CSAs and grey values.

The process of finding location-specific models starts from lin-
ear transformation of user coordinates c ∈ [−180 : 180] × [−90 :
90] into texture coordinates t ∈ [0 : 1]2. Then grey value of the
pixel closest to t can be found, and the corresponding CSA can be
retrieved. All steps can be done in constant time, hence the overall
CSA lookup time is O(1).

Our distributed cluster runs a number of worker processes on
each node to handle multiple clients in parallel. Processes within a
node share a single copy of the regions bitmap. Since the bitmap
lookups can be done without building additional data structure, ex-
cept for index of CSAs by grey value, the total RAM consumption

associated with lookups is O(n) per process plus one size of the
bitmap file covering the U.S. (per node), where n is the number of
CSAs. The total PGM file size is 17.4MB, which can easily fit into
small fraction of RAM in distributed cluster node.

3. ALGORITHM

The underlying ASR system is based on a WFST based decoder as
first described in [13]. The decoder employs the difference LM prin-
ciple similar to [14, 15]:

HCLGsmall ◦ F (1)

where ◦ denotes on-the-fly composition, H contains HMM defini-
tions, C represents the context dependency, L is the lexicon, Gsmall

is a small, typically uni-gram, language model, and

F = G−
small ◦Gbig (2)

where G−
small is negated score version of Gsmall and Gbig is a big

language model. To provide efficiency and computational time sav-
ings, HCLGsmall is constructed prior to runtime via offline com-
position. At runtime, the static cascade HCLGsmall is dynamically
composed with the difference grammar “G−

small ◦Gbig” on the fly.
As described in [13], the decoder includes support for user-

specific vocabularies by leveraging a Gbig class language model for
which we dynamically replace class non-terminals with intra-class
grammars [16]. Our Geo-LM construction leverages these principles
as explained in the following sections.

3.1. Geo-LM Construction

One straightforward way of constructing Geo-LM is to build the
whole LM for each individual Geo region by interpolating the gen-
eral Geo independent LM and the LM trained on the Geo depen-
dent text only. However, it would result in a large number of large
sized Geo-LMs, prohibiting the server from preloading all models
into system memory as required by our application of real-time ASR
decoding. As a result, this solution is not practical for deployment
and therefore not considered in this paper. Instead, we propose con-
structing Geo-LM based on class LM described as follows.

Our Gbig class LM results from an offline interpolation of vari-
ous component language models build over different types of train-
ing data sources. Two important data sources in this specific con-
text are 1) production traffic, i.e. automatically transcribed data; and
2) artificially-created text data. The automatic transcriptions pro-
duced by our system include specific markers that allow us to iden-
tify words or phrases that stem from intra-class grammars, in the
following referred to as slot LMs Gslot. Based on these markers,
the training data can be curated to replace such words and phrases
with non-terminal class labels, e.g. \CS-POI. For artificial training
text data creation, we leverage simple templates as shown in Table
1. Component language models trained on artificial data can play
a very important role when introducing new non-terminal class la-
bels for the first time. Fig. 2 illustrates a toy example of Gbig that
represents the templates in Table 1.

Prior Probabilities Templates
0.5 directions to \CS-POI
0.3 where is \CS-POI
0.2 find the nearest \CS-POI

Table 1. Examples of templates and their prior probabilities.
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0

1
directions:directions/0.5

2
where:where/0.3

3
find:find/0.2

5

to:to/1

is:is/1

4
the:the/1

6
\CS-POI:\CS-POI/1

nearest:nearest/1

Fig. 2. A toy example of WFST LM with class non-terminals.

Gslot models entities of specific category, which is POI in the
case of Geo-LM. In the proposed system, one Gslot is built for each
Geo region. The training data for each Gslot are the names of local
POIs in the corresponding region. For illustration, we provide a toy
example of Gslot containing only three POIs with priors as shown
in Fig. 3.

0

1
Harvard:Harvard/0.4

2
TD:TD/0.4

3

Vinodivino:Vinodivino/0.2

University:University/1

Garden:Garden/1

Fig. 3. A toy example of WFST representing slot LM.

Training Gslot as a statical n-gram LM enables it to model the
variations in POI names; e.g., both “Harvard University” and “Har-
vard” can be modeled in the Gslot as long as “Harvard University”
exists in the training data. In our system, priors are derived based on
distributions observed in production traffic.

In this work, the lexicon L is the union of lexicons for Gbig

and all available Gslot LMs. We employ an in-house developed
grapheme-to-phoneme (G2P) system to derive pronunciations auto-
matically if a word in the POI name is not already in our decode
lexicon.

At runtime, we dynamically replace the class non-terminals via
on-the-fly replacement with the respective matching, and appropri-
ately scaled, Gslot LM for the Gbig . Fig. 4 shows an example for
how the final WFST would look like if offline replacement were
used to statically create the graph. Since we construct the static cas-
cade HCLGsmall at model building time, the class non-terminals in
Gsmall are replaced by a small Gslot LM built from the POIs of all
regions. It should be noted that the scaling factors used to uniformly
scale the Gslot LM log-likelihoods play an important role.

The described framework allows for flexible updates to the
overall system. To update POIs or add new regions, one simply
needs to rebuild the Gslot LMs and potentially also HCLGsmall

and G−
small. This can be done very quickly and efficiently due to the

small sizes of the respective LMs involved. The flexibility of Gslot

updates is essential for the sustainability of our application due to
the rapid change in POIs, such as the opening/closing of businesses
and continuously changing popularity. In addition, since the sizes of
Gslot LMs are small, the proposed framework allows all models to
be preloaded into system memory during server initialization.

4. EXPERIMENTS

In this section we report the benchmark evaluations of the proposed
Geo-LM and general LM on the task of POI recognition in the
United States. In all experiments, the same AM of hybrid convo-
lutional neural network (CNN)-hidden Markov model (HMM) [17]
is used, which is trained with filter bank features from about 3000
hours of English speech data using cross-entropy and subsequent
bMMI objective functions [18].

4.1. Data

4.1.1. Training Data

For constructing the baseline general LM, the training data (D1) con-
tains a variety of data sources of collected privacy-preserved user
data. The training data for building the component LMs in the pro-
posed Geo-LM is composed of D1 and artificial use case templates
containing the POI class symbol as described in section 3.1. The
use case templates are equally weighted in our setup. To build slot
LMs within Geo-LM, we extract the searched POIs from the daily
updated Apple Map Search logs. Based on the Geo locations of the
extracted POIs, they are divided into 170 parts to build slot LMs for
169 CSAs and 1 “global” area. The “global” slot LM will be loaded
for users outside the 169 CSAs. The priors of POIs are set according
to the engagement frequency in the logs. The size comparison of
general LM and Geo-LM is summarized in Table 2, where the mas-
ter LM represents the Gbig class LM with class non-terminals, i.e.
before the replacement with slot LM Gslot.

LM #n-grams (millions)
Gsmall Gbig

General LM 5.5 9.3

Geo-LM Master LM 5.5 9.3
Slot LM 2.0 0.7 (avg.)

Table 2. Number of n-grams in general LM and Geo-LM. The size
of slot big LM is the average size over 170 regions.

4.1.2. Test Data

There are two types of test data used in our experiments:

1. Real-world user data randomly selected from Apple Siri pro-
duction traffic in the United States. There are two test sets
created from those real-world user data which include (T1)
POI search test set, which consists of 17587 utterances in the
local POI search domain; and (T2) general test set, which
consists of 9955 utterances that don’t include POIs.

2. Internally recorded local POI search test set (T3). We picked
8 major U.S. metropolitan regions and for each region the top
1000 most popular POIs (with megachains filtered out) based
on Yelp reviews are selected. For each POI, three utterances
are recorded with or without the carrier phrase “direction to”
from three different speakers.

4.2. Geo-LM Configurations

For training the Geo-LM, the Gsmall is trained as a unigram LM,
where the training data for the small Gslot LM includes all POIs for
the 170 Geo regions described in Section 4.1.1. The Gbig is trained
as a 4-gram LM. Depending on the location of the test data, the big
Gslot LM for the associated Geo region is used. As described in
3.1, the Gslot LMs are scaled before the class non-terminals replace-
ments for Geo-LM. We tuned on some development dataset and set
the scaling factors for the small Gslot LM and the big Gslot LMs to
be 0.95 and 0.7 respectively.

4.3. Experimental Results

We first conducted experiments on the real-world user test set. The
results in Table 3 show that using the class based Geo-LM leads to
significant relative word error rate reduction (WERR) of 18.7% on
the POI search test set (T1), with no accuracy degradation on the
general test set (T2). Since the POI search test set (T1) is randomly
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1
directions:directions/0.5

2
where:where/0.3

3
find:find/0.2

5

to:to/1

is:is/1

4the:the/1

6
\CS-POI:\CS-POI/1

nearest:nearest/1
7

\CS-POI-start:\CS-POI-start

8
Harvard:Harvard/0.4

9
TD:TD/0.4

10

Vinodivino:Vinodivino/0.2

University:University/1

Garden:Garden/1
11

\CS-POI-end:\CS-POI-end

Fig. 4. A toy example of final WFST LM replacing class non-terminals with slot LM.

sampled from production traffic, it contains many megachains such
as “Walmart” and “Home Depot” that the general LM has already
covered well. To benchmark the performance of name recognition
on more difficult local POIs, we then tested on the local POI search
test set (T3), which doesn’t contain any megachains. The results
in Table 4 show that the general LM performs poorly on this test
set (T3), and the proposed Geo-LM significantly improve WER by
relatively over 40% for all 8 cities. We also measure the speed of the
two benchmark systems, and observe the class based Geo-LM only
increase the latency marginally by less than 10 milliseconds.

Test Set General LM Geo-LM relative
WER(%) WER(%) WERR(%)

General (T2) 6.2 6.2 0
POI search (T1) 15.5 12.6 18.7

Table 3. WER comparisons between general LM and Geo-LM on
real-world user test sets.

Test Set General LM Geo-LM relative
WER(%) WER(%) WERR(%)

Boston 24.3 13.7 43.6
Chicago 26.3 15.2 42.2

Los Angeles 24.4 12.6 48.4
Minnesota 19.6 10.7 45.4
New York 27.3 15.7 42.5

Philadelphia 25.8 15.0 41.9
Seattle 24.8 13.8 44.4

San Francisco 26.5 15.1 43.0

Table 4. WER comparisons between general LM and Geo-LM on
internally recorded local POI search test set (T3).

To understand the behaviors of our proposed Geo-LM, we check
if Gslot LMs are indeed triggered during decoding on the POI search
test set (T1). Table 5 shows 77% of the POI search utterances have
Gslot triggered, and the WER on those utterances (9.7%) is signif-
icantly better than the WER on utterances without triggering Gslot

(23%). These results indicate that the decoding process did success-
fully trigger Gslot in Geo-LM for the majority of POI search test
utterances, and triggering Gslot is the key factor for accuracy im-
provement for the POI name recognition.

POIs search test subset percentage of utterances WER(%)
Gslot triggered 77% 9.7

Gslot not triggered 23% 23

Table 5. Performance of Geo-LM on the POI search test set (T1) di-
vided according to whether slot LMs are triggered during decoding.

Further error analysis shows the proposed Geo-LM system is
still making errors mainly due to the following causes: 1) Poor pro-
nunciation for foreign POI names. For example, although covered
by Gslot, the POI “Les Zygomates” is misrecognized as “Let’s Zika
matt” due to poor pronunciation guessing by our G2P model; 2) User
searches for POIs outside their associated CSA area and master LM

does not cover them well; 3) Confusability with common ngrams
when users’ requested POI names do not match ones in Gslot. For
example, while “Roam Artisan Burgers” exists in Gslot, users often
say “Roam Burgers” and the recognizer misrecognizes it as “Rome
burgers”. With these issues addressed, the triggering rate of Gslot is
likely to increase, potentially leading to better accuracy of POI name
recognition. To address these issues, in future works we plan to im-
prove our G2P model by enriching the training data, and improve
coverage and name variance of POIs in Gslot of our Geo-LM.

To justify our choice of CSA over other common Geo regions
granularities, we first compared CSAs with states as Geo regions in
our proposed Geo-LM framework. We trained two sets of Geo-LMs
based on CSAs and states respectively, and tested on a subset (3280
utterances) of the POI search test set (T1) where the users’ associ-
ated CSA and state boundaries are different. The results in Table 6
show that the CSA regions based Geo-LM performs better than the
state regions based Geo-LM with relative WERR of about 3%, and
they both outperform General LM baseline by over 20%. The reason
state regions perform worse than CSA regions for Geo-LM could be
that state regions often go beyond the normal size of frequent com-
muter routes. For example, users from San Francisco in Northern
California seldom search and drive 8+ hours directly to the POIs in
Los Angeles in Southern California, except for in less-frequent sce-
narios such as a road trip. It is too small of a use case to justify
expanding the scope of Geo-LM regions to cover areas of the size
of the whole state of California, which would introduce ambiguities
and deteriorate results for more important local searches. On the
other hand, smaller Geo regions such as zip codes and cities would
not be sufficient because users often commute beyond the scope of
these boundaries as shown in the statistics in Fig. 1.

LM Geo region WER(%) relative
granularity WERR(%)

General LM — 14.4 —

Geo-LM state 11.2 22.2
CSA 10.8 25

Table 6. WER comparisions: general LM and Geo-LMs with state
and CSA Geo region granularities on POI search task.

5. CONCLUSIONS

In this work, we present a Geo-LM framework that provides the ben-
efits of flexible training, efficient LM construction at run-time, and
significant ASR accuracy improvement over the general LM on the
task of local POI recognition. Our experiments prove that local-
ized information can benefit ASR significantly, leading to over 18%
WERR on the tasks of local POI search. Due to the limited impact to
system speed, regional coverage can be continuously improved. But
it is still essential to provide a “global” Geo-LM in addition to re-
gional LMs so that ASR can handle long distance queries and cases
when users are located outside any supported regions.

Finally, we’d like to note that the method and system proposed
here is language independent. The expansion of Geo-LM support for
other locales besides US English should be straightforward.
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